Refine Your Search

Topic

Search Results

Technical Paper

A Study of the Vapor- and Particle-Phase Sulfur Species in the Heavy-Duty Diesel Engine EGR Cooler

1998-05-04
981423
To meet future NO, heavy-duty diesel emissions standards, exhaust gas recirculation (EGR) technology is likely to be used. To improve fuel economy and further lower emissions, the recirculated exhaust gas needs to be cooled, with the possibility that cooling of the exhaust gas may form sulfuric acid condensate in the EGR cooler. This corrosive condensate can cause EGR cooler failure and consequentially result in severe damage to the engine. Both a literature review and a preliminary experimental study were conducted. In this study, a manually controlled EGR system was installed on a 1995 Cummins Ml l-330E engine which was operated at EPA mode 9* (1800 rpm and 75% load). The Goksoyr-Ross method (1)** was used to measure the particle-phase sulfate and vapor-phase H2SO4 and SO2 at the inlet and outlet locations of the EGR cooler, obtaining H2SO4 and SO2 concentrations. About 0.5% of fuel sulfur in the EGR cooler was in the particle-phase.
Technical Paper

A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy

1973-02-01
730633
Turbocharging, in addition to increasing an engine's power output, can be effectively used to maintain exhaust emission levels while improving fuel economy. This paper presents the emission and performance results obtained from a turbocharged multicylinder spark ignition engine with thermal reactors and exhaust gas recirculation (EGR) operated at steady-state, part-load conditions for four engine speeds. When comparing a turbocharged engine to a larger displacement naturally aspirated engine of equal power output, the emissions expressed in grams per mile were relatively unchanged both with and without EGR. However, turbocharging provided an average of 20% improvement in fuel economy both with and without EGR. When comparing the turbocharged and nonturbocharged versions of the same engine without EGR at a given load and speed, turbocharging increased the hydrocarbon (HC) and carbon monoxide (CO) emissions and decreased oxides of nitrogen (NOx) emissions.
Technical Paper

An Experimental Investigation into Particulate Matter Oxidation in a Catalyzed Particulate Filter with Biodiesel Blends on an Engine during Active Regeneration

2013-04-08
2013-01-0521
Active regeneration experiments were carried out on a production 2007 Cummins 8.9L ISL engine and associated diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF) aftertreatment system. The effects of SME biodiesel blends were investigated to determine the particulate matter (PM) oxidation reaction rates for active regeneration. The experimental data from this study will also be used to calibrate the MTU-1D CPF model [1]. The experiments covered a range of CPF inlet temperatures using ULSD, B10, and B20 blends of biodiesel. The majority of the tests were performed at a CPF PM loading of 2.2 g/L with in-cylinder dosing, although 4.1 g/L and a post-turbo dosing injector were also investigated. The PM reaction rate was shown to increase with increasing percent biodiesel in the test fuel as well as increasing CPF temperature.
Technical Paper

Analysis of the Physical Characteristics of Diesel Particulate Matter Using Transmission Electron Microscope Techniques

1979-02-01
790815
An Andersen Impactor was used to collect particulate samples in both the undiluted and diluted exhaust from a Caterpillar 3150 diesel engine operated on the EPA 13-mode cycle. A total of 24 samples were examined using the transmission electron microscope and approximately 300 photomicrographs were taken. The microscope analysis and photomicrographs revealed details concerning the physical characteristics of the particulate and permitted a direct visual comparison of the samples collected. The photomicrographs were used to obtain diameter measurements of the basic individual spherical particles that comprise the much larger aggregates/agglomerates. Nearly 11,000 basic particles were measured and the observed range of diameters was 70-1200 Å. The mean particle diameters in the undiluted and diluted exhaust samples were 479 Å and 436 Å respectively. respectively. A respectively. 436 A respectively.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
Technical Paper

Cooperative Study of Heavy Duty Diesel Emission Measurement Methods

1978-02-01
780112
A cooperative test program was conducted by the CRC-APRAC CAPI-1-64 Composition of Diesel Exhaust Program Group to evaluate the technical aspects of a proposed EPA recommended Heavy Duty Diesel Emission Measurement and Test Procedure. The proposed changes affected the sampling configurations and the types of instruments used. Six participants studied the effects of a number of variables on the proposed changes and evaluated some alternative systems that included both CHEMI and NDIR instruments. The tests were conducted at one site using a multi-cylinder engine operating on the 13-Mode Cycle. Equivalency of systems was demonstrated and the best performance was obtained with a special NDIR system.
Technical Paper

Effect Of Swirl On Flame Propagation In A Spark Ignition Engine

1962-01-01
620192
Flame arrival data, determined by ionization gaps and a radiation detector, are presented for a multi-hole CFR engine equipped with six spark plugs spaced around the periphery of the combustion chamber, using a shrouded intake valve to produce swirl and with a standard valve to eliminate it. For results with the shrouded valve, path equations for the burnt gases are derived for several velocity distributions that satisfy the Navier-Stokes equations of motion for the unburned gas. Previous velocity distribution and observed flame movement data are presented in support of the derived model for the path of the burnt gases.
Journal Article

Effects of Biodiesel Blends on Particulate Matter Oxidation in a Catalyzed Particulate Filter during Active Regeneration

2010-04-12
2010-01-0557
Active regeneration experiments were performed on a production diesel aftertreatment system containing a diesel oxidation catalyst and catalyzed particulate filter (CPF) using blends of soy-based biodiesel. The effects of biodiesel on particulate matter oxidation rates in the filter were explored. These experiments are a continuation of the work performed by Chilumukuru et al., in SAE Technical Paper No. 2009-01-1474, which studied the active regeneration characteristics of the same aftertreatment system using ultra-low sulfur diesel fuel. Experiments were conducted using a 10.8 L 2002 Cummins ISM heavy-duty diesel engine. Particulate matter loading of the filter was performed at the rated engine speed of 2100 rpm and 20% of the full engine load of 1120 Nm. At this engine speed and load the passive oxidation rate is low. The 17 L CPF was loaded to a particulate matter level of 2.2 g/L.
Technical Paper

Effects of a Catalyzed Particulate Filter on Emissions from a Diesel Engine: Chemical Characterization Data and Particulate Emissions Measured with Thermal Optical and Gravimetric Methods

2003-03-03
2003-01-0049
A wide range of emissions were characterized from a heavy-duty diesel engine operated on conventional low sulfur (∼375 ppm) fuel, equipped with manually controlled EGR and a catalyzed particulate filter (CPF). The effect of the CPF and engine load was studied, along with a comparison of results between the gravimetric and thermal optical methods (TOM) for determining diesel particulate levels. Data were obtained from four of the EPA old 13 mode test cycle steady-state operating conditions, i.e., Modes 11, 10, 9, and 8 using a 1995 Cummins M11-330E engine with a Corning EX-80 cordierite particulate filter, coated with a platinum catalyst (5 g/ft3).
Technical Paper

Effects of a Ceramic Particle Trap and Copper Fuel Additive on Heavy-Duty Diesel Emissions

1994-10-01
942068
This research quantifies the effects of a copper fuel additive on the regulated [oxides of nitrogen (NOx), hydrocarbons (HC) and total particulate matter (TPM)] and unregulated emissions [soluble organic fraction (SOF), vapor phase organics (XOC), polynuclear aromatic hydrocarbons (PAH), nitro-PAH, particle size distributions and mutagenic activity] from a 1988 Cummins LTA10 diesel engine using a low sulfur fuel. The engine was operated at two steady state modes (EPA modes 9 and 11, which are 75 and 25% load at rated speed, respectively) and five additive levels (0, 15, 30, 60 and 100 ppm Cu by mass) with and without a ceramic trap. Measurements of PAH and mutagenic activity were limited to the 0, 30 and 60 ppm Cu levels. Data were also collected to assess the effect of the additive on regeneration temperature and duration. Copper species collected within the trap were identified and exhaust copper concentrations quantified.
Technical Paper

Modeling Study of Active Regeneration of a Catalyzed Particulate Filter Using One-Dimensional DOC and CPF Models

2011-04-12
2011-01-1242
The catalyzed particulate filter (CPF), used in conjunction with a diesel oxidation catalyst (DOC) is an important aftertreatment device used to meet Environmental Protection Agency (EPA) heavy-duty diesel emission standards for particulate matter (PM). Numerical modeling of these exhaust after-treatment devices decreases the time and cost of development involved. Modeling CPF active regeneration gives insight into the PM oxidation kinetics, which helps in reducing the regeneration fuel penalty. As seen from experimental data, active regeneration of the CPF results in a significant temperature increase into the CPF (up to 8°C/sec) which affects the oxidation rate of particulate matter (PM). PM oxidation during active regeneration was determined to be a function of filter PM loading, inlet temperature and inlet hydrocarbon concentration.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Physical Size Distribution Characterization of Diesel Particulate Matter and the Study of the Coagulation Process

1978-02-01
780788
Diesel particulate matter in both the diluted and undiluted state is subject to the processes of coagulation, condensation or evaporation, and nucleation which causes continuous changes in its physical characteristics. The Electrical Aerosol Analyzer (EAA) is used to measure the diesel particle size distribution in the MTU dilution tunnel for a naturally aspirated direct-injection diesel engine operated on the EPA 13 mode cycle. The design and development of accurate and repeatable sampling methods using the EAA are presented. These methods involve both steady-state tunnel and bag measurements. The data indicate a bimodal nature within the 0.001 to 1 μm range. The first mode termed the “embroynic mode” has a saddle point between 0.005 to 0.015 μm and the second mode termed the “aggregation mode” lies between .08 to .15 μm for the number distribution.
Technical Paper

The Characterization of the Hydrocarbon and Sulfate Fractions of Diesel Particulate Matter

1978-02-01
780111
One of the more objectionable aspects of the use of diesel engines has been the emission of particulate matter. A literature review of combustion flames, theoretical calculations and dilution tunnel experiments have been performed to elucidate the chemical and physical processes involved in the formation of diesel particulate matter. A comparative dilution tunnel study of diluted and undiluted total particulate data provided evidence supporting calculations that indicate hydro-carbon condensation should occur in the tunnel at low exhaust temperatures. The sample collection system for the measurement of total particulate matter and soluble sulfate in particulate matter on the EPA 13 mode cycle is presented. A method to correct for hydrocarbon interferences in the EPA barium chloranilate method for the determination of sulfate in particulate matter is discussed.
Technical Paper

The Characterization of the Soluble Organic Fraction of Diesel Particulate Matter

1979-02-01
790418
This paper is concerned with the demonstration of a methodology for chemically characterizing diesel particulate organic matter (POM) emissions. The procedure begins with a Soxhlet extraction of the POM with dichloromethane to obtain a soluble organic fraction (SOF). The acidic and basic portions of the SOF are isolated by liquid-liquid extraction techniques with aqueous base and aqueous acid, respectively. The neutral portion of the extract is separated into paraffin, aromatic, transitional and oxygenated fractions by column chromatography on silica gel. Two additional fractions, the ether insoluble and hexane insoluble fractions, are also separated by the procedure. Quantitative mass data are presented on the extraction and fractionation of twelve particulate samples from the exhaust of a medium-duty diesel engine collected in a dilution tunnel at a volume dilution ratio of 8 to 1.
Technical Paper

The Design and Testing of a Computer-Controlled Cooling System for a Diesel-Powered Truck

1984-11-01
841712
The hardware and software for a prototype computer controlled cooling system for a diesel powered truck has been designed and tested. The basic requirements for this system have been defined and the control functions, previously investigated in a study using the computer simulation model, were incorporated into the software. Engine dynamometer tests on the MACK-676 engine, comparing the conventional cooling system and the computer controlled system, showed the following advantages of the computer controlled system: 1. The temperature level to which the engine warms up to at low ambient temperature, was increased. 2. The faster shutter response reduced the temperature peaks and decreased total fan activity time. 3. The faster fan response reduces fan engagement time which should improve truck fuel economy.
Technical Paper

The Effect of Low Sulfur Fuel and a Ceramic Particle Filter on Diesel Exhaust Particle Size Distributions

1992-02-01
920566
Diesel exhaust particle size distributions were measured using an Electrical Aerosol Analyzer (EAA) with both conventional (0.31 wt. pet sulfur) and low sulfur fuel (0.01 wt pet sulfur) with and without a ceramic diesel particle filter (DPF). The engine used for this study was a 1988 heavy-duty diesel engine (Cummins LTA10-300) operated at EPA steady-state modes 9 and 11. The particle size distribution results indicated the typical bi-modal distribution; however, there were clear differences in the number of particles in each mode for all conditions. For the baseline conditions with no DPF, there was more than one order of magnitude greater number of particles in the nuclei mode for the conventional fuel as compared to the low sulfur fuel, while the accumulation modes for each fuel were nearly identical.
Technical Paper

The Effect of Oil and Coolant Temperatures on Diesel Engine Wear

1977-02-01
770086
A study has been made of piston ring wear and total engine wear using literature data and new experimental results. The main purpose of the study was to establish the effects of oil and coolant temperatures on engine wear. Wear trends that were found in the early 1960's may not be valid any longer because of the development of higher BMEP turbocharged diesel engines, better metallurgical wear surfaces and improved lube oil properties. New data are presented for the purpose of describing present wear trends. A direct-injection, 4-cycle, turbocharged diesel engine was used for the wear tests. The radioactive tracer technique was used to measure the top piston ring chrome face wear. Atomic emission spectroscopy was employed to determine the concentration of wear metals in the oil to determine total engine wear based on iron and lead. The data were analyzed and compared to the results found in the literature from previous investigators.
Technical Paper

The Effect of Truck Dieselization on Fuel Usage

1981-02-01
810022
The effect of truck dieselization for three levels of diesel penetration into each of the eight classes of trucks is modeled. Diesel and total truck sales, population, mileage and yearly fuel usage data are aggregated by four truck classes representing light, medium, light-heavy and heavy-heavy classes. Four fuel economy scenario's for different technological improvements were studied. Improvement of fuel economy for light and heavy-heavy duty vehicle classes provides significant total fuel savings. Truck dieselization of light and light-heavy duty vehicle classes provides the largest improvement of fuel usage due to the fact that they have large numbers of vehicles and presently have few diesels. Total car and truck fuel usage in the 1980's shows roughly a constant demand with cars decreasing due to improved new fleet fuel economy and trucks increasing due to a larger population with better fuel economy due to dieselization and improved technology.
Technical Paper

The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on the Emissions from a Heavy Duty Diesel Engine

2006-04-03
2006-01-0875
The objective of this research was to study the effects of a CCRT®, henceforth called Diesel Oxidation Catalyst - Catalyzed Particulate Filter (DOC-CPF) system on particulate and gaseous emissions from a heavy-duty diesel engine (HDDE) operated at Modes 11 and 9 of the old Environmental Protection Agency (EPA) 13-mode test cycle Emissions characterized included: total particulate matter (TPM) and components of carbonaceous solids (SOL), soluble organic fraction (SOF) and sulfates (SO4); vapor phase organics (XOC); gaseous emissions of total hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), nitric oxide (NO) and nitrogen dioxide (NO2), oxygen (O2) and carbon dioxide (CO2); and particle size distributions at normal dilution ratio (NDR) and higher dilution ratio (HDR). Significant reductions were observed for TPM and SOL (>90%), SOF (>80%) and XOC (>70%) across the DOC-CPF at both modes.
X