Refine Your Search

Topic

Search Results

Standard

AXLE EFFICIENCY TEST PROCEDURE

1979-06-01
HISTORICAL
J1266_197906
Data from this procedure permits mapping axle efficiency and/or waste energy over the operating range of passenger cars, trucks, busses, and other highway vehicles to which axles are applied.
Standard

AXLE EFFICIENCY TEST PROCEDURE

1990-06-01
HISTORICAL
J1266_199006
Data from this procedure permit mapping axle efficiency and/or waste energy over the operating range of passenger cars, trucks, busses, and other highway vehicles.
Standard

Axle Efficiency Test Procedure

2001-04-27
CURRENT
J1266_200104
Data from this SAE Recommended Practice permit mapping axle efficiency and/or waste energy over the operating range of trucks, busses, and other highway vehicles based on truck chasses.
Standard

ENGINE RETARDER DYNAMOMETER TEST AND CAPABILITY RATING PROCEDURE

1994-08-01
HISTORICAL
J1621_199408
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Engine Retarder Dynamometer Test and Capability Rating Procedure

2012-07-02
CURRENT
J1621_201207
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Engine Retarder Dynamometer Test and Capability Rating Procedure

2005-12-12
HISTORICAL
J1621_200512
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Exhaust Brake Dynamometer Test and Capability Rating Procedure

2012-07-02
CURRENT
J2458_201207
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Exhaust Brake Dynamometer Test and Capability Rating Procedure

1998-07-01
HISTORICAL
J2458_199807
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Heavy Truck and Bus Retarder Downhill Performance Mapping Procedure

2000-05-01
CURRENT
J1489_200005
The procedure covers the estimation of the total retardation capability available to a specific vehicle from: a Natural retardation (rolling resistance, aerodynamic drag, etc). b Engine drag c Engine, integral automatic transmission, driveline or trailer-axle retarders It assumes that foundation brakes are not used for maintaining speed on long mountain descents. Retardation is rated in terms of the maximum grades on which stable control speeds can be maintained for each gear over the range of highway speeds appropriate to that gear. For each gear, the calculation procedure determines maximum grades for at least four values of control speed ranging from the vehicle velocity corresponding to full load governed engine rpm, to the vehicle velocity corresponding to the engine rpm at minimum (idle) speed. In addition, the calculation procedure provides information on the total retarding power available for each gear.
Standard

Liquefied Natural Gas (LNG) Vehicle Fuel

2018-02-12
CURRENT
J2699_201802
This SAE Information Report applies to liquefied natural gas used as vehicle fuel and requires LNG producers to provide the required information on the fuel composition and its “dispense by” date.
Standard

Liquefied Natural Gas (LNG) Vehicle Fuel

2011-07-08
HISTORICAL
J2699_201107
This SAE Information Report applies to liquefied natural gas used as vehicle fuel and requires LNG producers to provide the required information on the fuel composition and its “dispense by” date.
Standard

Manual Transmission Efficiency and Parasitic Loss Measurement

2012-11-09
CURRENT
J1540_201211
Because of the intense focus on fuel economy and fuel emission standards, it has become imperative to optimize vehicle drivetrains. In light of this, component efficiencies have become an important factor in the drivetrain decision-making process. It has therefore become necessary to develop a universal standard to judge transmission efficiency. This SAE Recommended Practice specifies a test procedure which maps torque transmittal efficiency and parasitic losses for manual transmissions. The application of this document is intended for manual transmissions used in light (class 4) through heavy truck applications with both simple and compound ratio structures. This document is separated into two parts. The first compares input and output torque throughout a specified input speed range in order to determine the overall transmission efficiency. This test is used to evaluate all forward gears; testing in reverse is optional.
Standard

Pilot Bearings for Truck and Bus Applications

2017-08-14
CURRENT
J1731_201708
This SAE Recommended Practice describes STANDARD-DUTY and EXTREME-DUTY Pilot Bearing requirements and sizes for class 6, 7, and 8 on-highway trucks and buses that use diesel engines and manual transmissions. The recommendations may apply to a wide range of other pilot-bearing applications, such as agricultural, industrial, and construction equipment.
X