Refine Your Search

Topic

Search Results

Journal Article

A Parametric Optimization Study of a Hydraulic Valve Actuation System

2008-04-14
2008-01-1356
A new camless system (referred to as Hydraulic Valve Control - HVC - system) is in an advanced state of prototyping and development. The present paper aims to support the new incoming activities concerning the possible modifications to the geometrical and mechanical characteristics of the system. The optimization of the new HVC system prototype is done using a multi-objective tool that integrates the hydraulic/mechanical simulator reproducing the physical model, with an optimization software. The latter tool can be used choosing a specific approach among different probabilistic mathematical models; the Genetic Algorithm approach was chosen to achieve the goal of the present study. The paper describes design optimization of the pilot stage of the actuator for given characteristics of the power stage and of the poppet valve.
Journal Article

An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities

2020-04-14
2020-01-0832
Spray modeling techniques have evolved from the classic DDM (Discrete Drops Method) approach, where the continuous liquid jet is discretized into “drops” or “parcels” till advanced spray models often based on Eulerian approaches. The former technique, although computationally efficient, is essentially inadequate in highly dense jets, as in the near nozzle region of compression ignition engines, while the latter could lead to extreme levels of computational effort when resolved interface capturing methods, such as VoF (Volume of Fluids) and LS (Level-Set) types, are used. However, in a typical engineering calculation, the mesh resolution is considerably coarser than in these high fidelity computations. If one presumes that these interfacial details are far smaller than the mesh size, smoothing features over at least one cell ultimately results in a diffuse-interface treatment in a Eulerian framework.
Technical Paper

Application of a Fully Flexible Electro-Hydraulic Camless System to a Research SI Engine

2009-09-13
2009-24-0076
This paper presents the further development of an electro-hydraulic camless valve actuation system for internal combustion engines. The system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. Valve timing and duration are controlled by a pilot stage governed by a solenoid, fast-acting, three-way valve. Valve lift is controlled by varying the oil pressure of the power stage. The system exploits an energy recovery working principle that plays a significant role in reducing the power demand of the whole valve train. In the present paper a new HVC actuator design is presented and its performances in terms of valve lift profile, repeatability and landing are discussed. Experimental data obtained by the application of the HVC system to a motored, single-cylinder research engine have been used to support the numerical evaluation of the potentialities of non-conventional valve actuation in engine part-load operation.
Technical Paper

Artificial Intelligence Methodologies for Oxygen Virtual Sensing at Diesel Engine Intake

2012-04-16
2012-01-1153
In the last decades, worldwide automotive regulations induced the industry to dramatically increase the application of electronics in the control of the engine and of the pollutant emissions reduction systems. Besides the need of engine control, suitable fault diagnosis tools had also to be developed, in order to fulfil OBD-II and E-OBD requirements. At present, one of the problems in the development of Diesel engines is represented by the achievement of an ever more sharp control on the systems used for the pollutant emission reduction. In particular, as far as NOx gas is concerned, EGR systems are mature and widely used, but an ever higher efficiency in terms of emissions abatement, requires to determine as better as possible the actual oxygen content in the charge at the engine intake manifold, also in dynamic conditions, i.e. in transient engine operation.
Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

2019-09-09
2019-24-0008
Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
Technical Paper

Common Rail HSDI Diesel Engine Combustion and Emissions with Fossil / Bio-Derived Fuel Blends

2002-03-04
2002-01-0865
In order to evaluate the potentialities of bioderived diesel fuels, the effect of fueling a 1.9 l displacement HSDI automotive Diesel engine with biodiesel and fossil/biodiesel blend on its emission and combustion characteristics has been investigated. The fuels tested were a typical European diesel, a 50% biodiesel blend in the reference diesel, and a 100% biodiesel, obtained by mixing rape seed methyl ester (RME) and recycled cooking oil (CME). Steady state tests were performed at two different engine speeds (2500 and 4000 rpm), and for a wide range of loads, in order to evaluate the behavior of the fuels under a large number of operating conditions. Engine performance and exhaust emissions were analyzed, along with the combustion process in terms of heat release analysis. Experimental evidences showed appreciably lower CO and HC specific emissions and a substantial increase in NOx levels. A significant reduction of smoke emissions was also obtained.
Technical Paper

Dependence of Flow Characteristics of a High Performance S.I. Engine Intake System on Test Pressure and Tumble Generation Conditions - Part 1: Experimental Analysis

2004-03-08
2004-01-1530
In this paper an experimental analysis is carried out to evaluate the dependence of the flow characteristics in the intake system of a high performance 4 valve, Spark Ignition Internal Combustion Engine, on the experimental conditions at the steady flow test bench. Experimental tests are performed at different pressure levels on a Ducati Corse racing engine head, to measure the Discharge Coefficient Cd and the Tumble Coefficient NT, expanding the work already presented in a previous work by the same research group: with a new test bench, the maximum test pressure level is increased up to 24 kPa, while differently-shaped tumble adaptors are used to evaluate Nt. The study is aimed at determining the influence of the test pressure on Cd and NT measurements, and in particular of the tumble adaptor shape.
Technical Paper

Development of a Model for the Simulation of a Reed Valve Based Secondary Air Injection System for SI Engines

2005-04-11
2005-01-0224
This paper describes a research activity, carried out at the University of Perugia, focused on the modelling of an automatic reed valve in a coupled fluid-structure approach. The application here concerned is a reed device used to control a Secondary Air Injection (SAI) system which allows ambient air to enter the exhaust pipe upstream of the catalyst (useful for the reduction of emissions in rich mixture engine operating conditions). Since currently no commercial codes are still available for simulating in a comprehensive way the non-linear dynamics of a reed valve device with position constraints, the main objective of the work is the calculation of the air mass flow rate admitted to the exhaust system through the reed, by means of a slim and easy software tool. The task is accomplished by integrating two different codes, developed by the authors.
Technical Paper

Development of an Electro-Hydraulic Camless VVA System

2007-09-16
2007-24-0088
Among variable valve actuation systems, fully flexible systems such as camless devices are the most attractive valvetrains for near-future engines. This paper presents a research activity about an electro-hydraulic camless system for internal combustion engines. The Hydraulic Valve Control (HVC) system uses hydraulic forces to open the valve while a mechanical spring is used for the closure. The system is fed by an hydraulic pump and two pressure regulators which provide two different pressure levels: a high pressure level (approximately 100 bar) for the pilot stage and a low adjustable pressure level (from 20 to 90 bar) for the actuator power stage. The valve opening duration is controlled by varying the timing of the opening signal of the pilot stage; the valve lift is adjusted varying the oil pressure of the power stage. From a general point of view, the HVC system is an open loop device for engine valve actuation.
Technical Paper

Development of an Urea Supply System for the SCR Catalyst

2013-01-09
2013-26-0047
The increase in the fuel price and more stringent regulations on greenhouse gases (CO2) make the engine compression ignition technology even more attractive in the context of internal combustion engines. This is because the modern turbocharged direct injection engines, with the common rail fuel system, are characterized by high combustion efficiency and power density, that make them particularly suitable both for applications on and off road. On the other hand, the compression ignition engines are subject to a heavy technological developments to meet the more stringent regulations on emissions of exhaust pollutants, especially PM and NOx. The adopted technologies have two main approaches, on the combustion and on the exhaust gas aftertreatment. The measures applied for combustion can reduce emissions, but with the risk of penalizing the other engine performances, such as noise, power output and fuel consumption.
Journal Article

Eulerian CFD Modeling of Coupled Nozzle Flow and Spray with Validation Against X-Ray Radiography Data

2014-04-01
2014-01-1425
This paper implements a coupled approach to integrate the internal nozzle flow and the ensuing fuel spray using a Volume-of-Fluid (VOF) method in the CONVERGE CFD software. A VOF method was used to model the internal nozzle two-phase flow with a cavitation description closed by the homogeneous relaxation model of Bilicki and Kestin [1]. An Eulerian single velocity field approach by Vallet et al. [2] was implemented for near-nozzle spray modeling. This Eulerian approach considers the liquid and gas phases as a complex mixture with a highly variable density to describe near nozzle dense sprays. The mean density is obtained from the Favreaveraged liquid mass fraction. The liquid mass fraction is transported with a model for the turbulent liquid diffusion flux into the gas.
Technical Paper

Experimental Investigation of a Port Fuel Injected Spark Ignition Engine Fuelled with Variable Mixtures of Hydrogen and Methane

2013-04-08
2013-01-0226
The paper describes an experimental research which addressed the study of a 4-cylinder, spark-ignited, port-fuel-injected, production engine modified for hydrogen-methane blend fueling. The original engine was a 2.8-liter, naturally aspirated, methane-fuelled engine. The engine modifications included two fuel injectors per port and ECU replacement for controlling lean burn combustion and enabling real-time variation of the fuel blend, based on an alpha-N mapping approach. Since hydrogen infrastructures are an issue and its production costs are still today very high, pure hydrogen usage is not a viable solution for near future vehicles. In view of this, in the present paper, the maximum volumetric concentration of hydrogen in methane has been set to 35% (which on a mass basis corresponds to 6.3%). The variability of the fuel mixture has been achieved by installing two separate fuel lines connected to two fuel rails: a total of 8 injectors are installed.
Technical Paper

Experimental and Numerical Analysis of Charge Motion Characteristics Depending on Intake Valves Actuation Strategies

2005-04-11
2005-01-0242
This present work is aimed to the analysis of the possible advantages that could be obtained exploiting Variable Valve Actuation strategies in an high performance engine head. A set of experimental tests was carried out to obtain maps of the discharge, tumble and swirl coefficients, at any combination of asymmetric lifts of the two intake valves. The results show that asymmetric strategies could allow engine part load operation characterized by enhanced tumble/swirl generation, while keeping the same effective flow area of conventional two valves symmetric lift. Numerical simulations allowed a deeper understanding of the tumble motion characteristics at different lift combinations, and in particular for asymmetric low lifts cases where the lack of the typical abrupt tumble rising zone was noted.
Technical Paper

Experimental and Numerical Analysis of a Swirled Fuel Atomizer for an Aftertreatment Diesel Burner

2023-08-28
2023-24-0106
Emission legislation for light and heavy duty vehicles is requiring a drastic reduction of exhaust pollutants from internal combustion engines (ICE). Achieving a quick heating-up of the catalyst is of paramount importance to cut down cold start emissions and meet current and new regulation requirements. This paper describes the development and the basic characteristics of a novel burner for diesel engines exhaust systems designed for being activated immediately at engine cold start or during vehicle cruise. The burner is comprised of a swirled fuel dosing system, an air system, and an ignition device. The main design characteristics are presented, with a detailed description of the atomization, air-fuel interaction and mixture formation processes. An atomizer prototype has been extensively analyzed and tested in various conditions, to characterize the resulting fuel spray under cold-start and ambient operating conditions.
Technical Paper

Experimental and Numerical Study of an Electro-Hydraulic Camless VVA System

2008-04-14
2008-01-1355
This paper presents the current research activity about an electro-hydraulic camless valve actuation system for internal combustion engines. From a general point of view, this system (Hydraulic Valve Control - HVC) is an open loop device for engine valve fully flexible camless actuation. In the HVC system, the valve actuation timing and duration are controlled by varying the driving signal of the pilot stage, which is governed by a solenoid, fast-acting, three-way valve; the valve lift is adjusted by varying the oil pressure of the power stage. This system uses hydraulic forces to open the engine valve while a mechanical spring is used for its closure. The HVC key element is a spool valve, which operates as a three way / three position valve. This element is designed in order to ensure the synchronization of its own motion with that of the poppet valve mass-spring system.
Technical Paper

Flow Characterization of a High Performance S.I. Engine Intake System - Part 1: Experimental Analysis

2003-03-03
2003-01-0623
In this work an experimental analysis is performed to evaluate the influence of different flow bench test conditions and system configurations on the flow characteristics in the intake system of a high performance 4-valve, SI Internal Combustion Engine: valve lift, test pressure drop, throttle valve aperture, throttle valve opening direction in respect to the intake system layout (i.e. clockwise/counterclockwise), presence of the tumble adaptor. To this aim, experimental tests are performed on a Ducati Corse racing engine cylinder head, by measuring the discharge coefficient and the tumble coefficient. The several experimental data obtained by combining the different operational and geometrical parameters are analysed and discussed.
Technical Paper

Fluid Dynamic 1D Modeling for the Design Optimization of Reed Valve Devices in Secondary Air Injection Applications

2005-09-11
2005-24-080
Modeling and studies on reed valve devices are topics often dealt with when designing internal combustion engine intake and exhaust systems. This paper describes an activity about the modeling and the optimization potentiality of an engine equipped with a secondary air injection system by means of a reed valve device. The first step of the work dealt with the development and tuning of a non-linear Finite Element model of reed valve and with the integration of this model into a one-dimensional fluid-dynamics simulation code. In particular during this phase the potentialities of the method were tested by implementing the FE model both in a 1D University code and in a 1D commercial code (by means of a provided interface for User Defined Elements). In the second step of the work the simulation results were analyzed for different engine operating points.
Technical Paper

GDI Ammonia Spray Numerical Simulation by Means of OpenFOAM

2023-04-11
2023-01-0311
The goal of mitigating climate change has driven research to the use of carbon-free energy sources. In this regards, green hydrogen appears as one of the best options, however, its storage remains difficult and expensive. Indeed, there is room to consider the use of ammonia (an efficient hydrogen carrier) directly as a fuel for internal combustion engines or gas turbines. Currently, there are very few works in the literature describing liquid ammonia sprays, both from experimental and modeling point of view, and especially dealing with flash-boiling conditions. In this research work, the direct injection ammonia spray is modeled with the Lagrangian particle approach, building up a numerical model within the OpenFOAM framework, for transient analyses using the U-RANS approach.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Technical Paper

Injection Strategies Tuning for the Use of Bio-Derived Fuels in a Common Rail HSDI Diesel Engine

2003-03-03
2003-01-0768
The potentialities in terms of engine performance and emissions reduction of pure biodiesel were examined on a Common Rail HSDI Diesel engine, trying to define a proper tuning of the injection strategies to bio-fuel characteristics. An experimental investigation was therefore carried out on a typical European passenger car Diesel engine, fuelled with a soybean oil derived biodiesel. A standard European diesel fuel was also used as a reference. In particular, the effects of an equal relative air/fuel ratio at full load condition were analysed; further, a sensitivity study on the outcome of the pilot injection timing and duration at part load on engine emissions was performed. Potentialities in recovering the performance gap between fossil fuel and biodiesel and in reducing NOx specific emissions, affecting only to a limited extent the biodiesel emission benefit in terms of CO, HC and FSN, were highlighted.
X