Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Standard

AEROSPACE LANDING GEAR SYSTEMS TERMINOLOGY

1997-01-01
HISTORICAL
AIR1489A
This report has been compiled by the Landing Gear Systems Terminology panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline.
Standard

Aerospace Landing Gear Systems Terminology

2006-10-26
HISTORICAL
AIR1489B
This report has been compiled by the Landing Gear Systems Terminology panel of SAE Committee A-5 (Aerospace Landing Gear Systems). It represents an effort to gather together those terms commonly used within the discipline. Some terms are of course common to other disciplines as well. Others, however, are unique in form and/or meaning to the Landing Gear discipline. The need has been noted to set these terms down and provide a standard definition in order that communication within the discipline may be conducted with a common understanding. Full use has been made of available published information, and a list of references is provided. See also References (a) to (e). Terms listed are usually applicable to a general functional area of Landing Gear disciplines. These general functional areas include; landing impact, directional ground control, velocity control (acceleration, retardation, and arrestment), structural support, ground flotation, and ground maintenance.
Standard

Catalog of Landing Gear Systems and Suppliers

2021-02-03
CURRENT
AIR5631A
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following commercial aircraft types; wide body jet airliners, narrow body jet airliners, and turboprop/commuter aircraft and the following military aircraft types; fighter, bomber, cargo, attack, surveillance, tanker and helicopter categories. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems. Future revisions of this document will add aircraft as they enter into service.
Standard

Catalog of Landing Gear Systems and Suppliers

2009-02-19
HISTORICAL
AIR5631
The purpose of this document is to provide a listing for current commercial and military aircraft landing gear systems and their types and manufacturers. Data has been provided for the following aircraft types: wide body jet airliners, narrow body jet airliners, turboprop/commuter aircraft, cargo/transport aircraft and fighter/attack aircraft. The aircraft that have been included in this document are in operational service either with airlines, business, cargo or military operators. No information is presented for aircraft that are currently being developed or that are not in extensive usage. This document will provide an informational reference for landing gear engineers to access when evaluating other gear and aircraft systems.
Standard

GLAND DESIGN: SCRAPER, LANDING GEAR, INSTALLATION

1994-04-01
HISTORICAL
AS4052
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of MIL-G-5514, the accepted gland standard for MS28775. Piston diameters, gland internal diameters, and the groove sidewall angles and surface finish are defined by MIL-G-5514, but the gland outer retaining wall diameter is changed. AS4088 is similar to this document, but was developed by SAE A-6 for flight control and general purpose cylinders. It differs from this document primarily by the clearance between the rod (piston) and outer gland wall. Since landing gears are more susceptible to dirt contamination, the additional clearance provides a larger path to allow excessive dirt accumulation to exit the gland.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2018-04-09
CURRENT
AS85352A
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

Inflator Assembly and Gage Elements, Pneumatic Pressure, Remote Control, Direct Reading

2011-01-14
HISTORICAL
AS85352
This specification covers a direct reading, remote control, pneumatic pressure inflator assembly, for use on aircraft tires and struts having pneumatic pressure requirements up to 600 psi. It includes pressure relief provisions to provide for safe inflation. Also included are dual chuck stem gages for measuring tire pressure.
Standard

Landing Gear Storage

2021-04-23
CURRENT
ARP5936
This document categorizes the different types of storage requirements, either on the aircraft or new unused or overhauled on the shelf, for aircraft landing gears/components. Recommendations and examples of proper landing gear storage are outlined. Reclamation recommendations are provided for aircraft landing gear returning from long-term storage.
Standard

Landing Gear System Development Plan

2010-06-25
HISTORICAL
ARP1598A
This Aerospace Recommended Practice (ARP) is therefore intended to document the process of landing gear system development. Some of the steps covered are mandatory and others are elective, or dependent upon customer requirements or desires. Economics is a very significant factor and for each analysis or test performed, more confidence and assurance of success is gained, but at a price. Some of the steps are performed as a matter of “good engineering practice” and without special recognition. Others are unique to the particular landing gear system and all together comprise a complete development.
Standard

Landing Gear System Development Plan

2018-09-02
HISTORICAL
ARP1598B
This SAE Aerospace Recommended Practice (ARP) is intended to document the process of landing gear system development. This document includes landing gear system development plans for commercial, military, fixed wing and rotary wing air vehicles.
Standard

SKID CONTROL PERFORMANCE

1991-10-31
HISTORICAL
ARP862A
This Aerospace Recommended Practice (ARP) provides recommended methods for measuring performance of skid control systems. It includes test items and equipment.
Standard

Steering Effect of Tilted, Free-Swiveling Nose Gears

2017-05-04
HISTORICAL
AIR4358
This Aerospace Information Report (AIR) considers the origin of cornering forces generated by tilted, free-swiveling nose gears; the effect of various landing gear parameters on the measured cornering forces; and a method of towing aircraft to measure the resulting steering forces.
Standard

Steering Effect of Tilted, Free-Swiveling Nose Gears

2022-06-27
CURRENT
AIR4358A
This Aerospace Information Report (AIR) considers the origin of cornering forces generated by tilted, free-swiveling nose gears; the effect of various landing gear parameters on the measured cornering forces; and a method of towing aircraft to measure the resulting steering forces.
X