Refine Your Search

Topic

Search Results

Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

Data Processing For CAE Material Input With Strain Rate Effects

2005-04-11
2005-01-0359
Strain rate effects have been identified as one of the most critical factors for the modeling of vehicle components in many previous investigations. The strain rate data available to the authors have been processed to obtain the input decks of a required material law in prior investigations. With the application of strain rate modeling, the strain rate database needs to be expanded. In order to continuously improve the safety CAE quality and efficiency, especially the prediction of a vehicle's pulse in a crash event, the effort has been made to include more strain rate data and extend the material database for safety CAE applications. In this study, strain rate data provided by Ispat Inland Inc. for AISI/DOE Technology Roadmap Program are processed. The material processed in this study include HSS590-CR, 440W-GA, BH300-GI, HSLA350-GI, DP600-HR, TRIP590-EG, TRIP600-CR, TRIP780-CR.
Technical Paper

Dynamic Testing and CAE Modeling of Body Mount An Application in the Frontal Impact Analysis of a Body-on-Frame Vehicle

2003-03-03
2003-01-0256
This study is a systematic investigation of the body mounts' dynamic characteristics in component, sub-system and full system levels and its application in the frontal impact analysis of a body-on-frame (BOF) vehicle. Concluded from the component study, the body mount is modeled by non-linear spring with built-in damage and rupture properties. The sub-system study reveals the importance of modeling the interaction between the body mount and its surrounding structure. A general-purpose interaction modeling is developed to provide a realistic CAE simulation of this interaction behavior. The full system is mainly for methodology validation. Four 90-degree frontal and the one IIHS offset frontal crash tests are used to evaluate the performance of the body mount in low and high speeds and its capability of predicting the body mount and the floor pan failures.
Technical Paper

Dynamic Testing and CAE Modeling of Engine Mounts and their Application in Vehicle Crash Analysis

2003-03-03
2003-01-0257
This study summarizes the latest development of the methodologies for testing and CAE modeling of the engine mount. A systematic approach is used in this study with detailed component, subsystem and full system level investigations. The component level study reveals the entangling phenomenon of the inertial and rate effects in the engine mount dynamic characteristics. In the subsystem, the interaction between the engine mount and its surrounding structure is explored. The full system study is primarily used to validate the CAE methodology for engine mounts developed in the component and subsystem level studies. Four full vehicle barrier crash tests, with different crash modes and speeds, are employed in this validation phase to evaluate the performance of the engine mount CAE methodology.
Technical Paper

Effect of Trigger Variation on Frontal Rail Crash Performance

2005-04-11
2005-01-0358
The frontal rail is one of the most important components of a vehicle in determining crash performance, especially for a body on frame vehicle. Prior research [1] has shown that the frontal rail absorbs a significant amount of impact energy in a crash condition. In order to optimize crash performance, a component level sensitivity study was conducted to determine the effect different types of triggers would have on the performance of the frontal rail. The objective of this study is to determine the sensitivity of trigger size, trigger shape, and trigger orientation as well as to improve corresponding trigger modeling methodology by comparing crushed components to crushed CAE models. In this sensitivity study, the location of the triggers was held fixed, while the size, shape, and orientation were varied. The metric that will be used to compare the performance of these different trigger shapes is the overall stiffness of the frontal rail.
Technical Paper

Finite Element Modeling of the Frame for Body on Frame Vehicles, Part 1 - Subsystem Investigation

2004-03-08
2004-01-0688
For a body-on-frame (BOF) vehicle, the frame is the major structural subsystem to absorb the impact energy in a frontal vehicle impact. It is also a major contributor to energy absorption in rear impact events as well. Thus, the accuracy of the finite element frame model has significant influence on the quality of the BOF vehicle impact predictability. This study presents the latest development of the frame modeling methodology on the simulation of BOF vehicle impact performance. The development is divided into subsystem (frame sled test) and full system (full vehicle test). This paper presents the first phase, subsystem testing and modeling, of the frame modeling development. Based on the major deformation modes in frontal impact, the frame is cut into several sections and put on the sled to conduct various tests. The success of the sled test highly depends on whether the sled results can replicate the deformation modes in the full vehicle.
Technical Paper

Finite Element Modeling of the Frame for Body-On-Frame Vehicles: Part II - Full Vehicle Crash

2004-03-08
2004-01-0689
This study focuses on the modeling of a frame in a body-on-frame (BOF) vehicle to improve the prediction of vehicle response in crashes. The study is divided into three phases - component (frame material modeling), subsystem (frame sled test) and full system (full vehicle test). In the component level, we investigate the available strain rate data, the performance of various material models in crash codes and the effect of the strain rate in crash simulation. In the subsystem phase, we incorporate the strain rate modeling and expand the scope to include both the forming and the welding effects in the subsystem CAE model to improve the correlation between CAE and test. Finally the improved frame modeling methodology with strain rate, forming and welding effects is adopted in full vehicle model. It is found that the proposed frame modeling methodology is crucial to improve the pulse prediction of a full vehicle in crashes.
Technical Paper

Finite Element Simulation of the EEVC Offset Deformable Barrier

1997-04-08
971531
Statistic shows the majority of real world frontal collisions involve only partial overlap of the vehicle front end. Thus the European Experimental Vehicle Committee (EEVC) has established a safety standard and test procedure utilizing a deformable barrier for offset impacts. The offset deformable barrier (ODB) is designed to represent the characteristics of a vehicle front end. Therefore, it can replace a target vehicle and the offset test can be conducted economically. Many component, sub-assembly and full vehicle system tests have been conducted in Ford using the EEVC ODB. Based on the various tests, the barrier responds differently depending on the front end design and the size of an impacting vehicle. Sometimes the front end of a test vehicle punches through the barrier. Also rupture of aluminum sheets and tearing of honeycomb materials are often observed in post-test barriers.
Technical Paper

Impact Testing of Bushings for Crashworthiness Simulation

2006-04-03
2006-01-0317
The dynamic response of a front lower control arm (LCA) is very important in crash safety. In the event of a crash, the deformation of the LCA affects the frame rail's ability to crush and absorb energy on impact. Therefore, the deformation and rupture of the LCA during a crash may indirectly influence the deceleration pulse which is needed for safety sensor calibration of airbag deployment [1]. Depending on compliance, bushings have a significant effect on the deformation and rupture of the LCA. During a high speed impact test, the bushings allow the LCA to rotate at the joints or points where the LCA connects to the frame. The development of new LCA and bushing designs, constructed of different materials and geometries, require a standard test to measure their performance. The overall goal of this study was to develop a standardized procedure to test the stiffness, deformation, and strength of LCA bushings.
Technical Paper

Impact Testing of Lower Control Arm for Crashworthiness Simulation

2005-04-11
2005-01-0352
The conversion between cast aluminum lower control arms (LCAs) and stamped steel LCAs has prompted the need for new LCA designs to achieve parallel levels of performance. Component tests procedures and CAE modeling methodologies need to be utilized to assess future LCA designs across a variety of vehicle lines to meet or exceed performance criteria. Therefore the overall goal of this study was to develop a standardized test procedure to test the stiffness, deformation and strength of LCAs. In addition, CAE modeling methodologies to better model LCAs will be developed. The test procedures and CAE modeling methodologies would then be used to set performance targets for future LCA designs. To standardize the LCA test procedure, component test fixtures were developed in this work. The objective of the fixtures is to test LCAs with similar boundary conditions they would experience in vehicle crash. Three different test modes are examined in this project.
Technical Paper

Implicit and Explicit Finite Element Methods for Crash Safety Analysis

2007-04-16
2007-01-0982
Explicit method is commonly used in crashworthiness analysis due to its capability to solve highly non-linear problems without numerous iterations and convergence problems. However, the time step for explicit methods is limited by the time that the physical wave crosses the element. Therefore, to avoid large amount of CPU time, the explicit method is usually used for non-linear dynamic problems with a short period of simulation duration. For problems under quasi-static loading conditions at pre-crash and post-crash, implicit method could be more efficient than explicit methods because the required computation time is much shorter. Due to the recent advance of crash codes, which allows both implicit and explicit computations to be performed in the same code, crash engineers are able to use explicit computation for crash simulation as well as implicit computation for some of the pre-crash quasi-static loading or post-crash spring back simulations.
Technical Paper

Important Modeling Practices in CAE Simulation for Vehicle Pitch and Drop

2006-04-03
2006-01-0124
Vehicle pitch and drop has become an important subject to crash analysis due to the recent FMVSS208 requirements for unbelted occupant. During frontal impact, the excessive header drop due to significant vehicle pitch and drop can induce the contact between occupant's head and sun visor. To avoid this issue, structure design for reducing vehicle pitch and drop is essential to crash safety. Historically, CAE simulation has been used in structure design during vehicle development process. Therefore, the quality of CAE modeling for replicating vehicle pitch and drop at physical test is crucial for assisting the structure design. In this paper, the most effective components in CAE model to vehicle pitch and drop have been identified and ranked by using the results of the sensitivity study. Hence the model quality can be emphasized on those major components including front horn, kick-down of front frame, body structure at upper load path, and body mounts.
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

2007-04-16
2007-01-0978
Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

Methodology On The Testing Of The Automobile Mount Dynamic Response

2001-03-05
2001-01-0474
This paper reports the latest development of methodologies for testing and CAE modeling of the automobile mounts. The objective of this study is to provide dynamic mount properties for product evaluation and CAE modeling guideline for crashworthiness simulations. The methodology is divided into component, subsystem and full system levels. The study at the component level is to extract the dynamic parameters of mounts, such as stiffness and damping coefficient, based on the component tests. Furthermore, such parameters are employed to investigate the interaction between mount and connecting structures at the subsystem level. A robust connection mechanism from mount to surrounding structures is also developed during this process. Finally, the results from full vehicle system tests are compared with the CAE simulations to verify the methodology at the component and subsystem levels. A robust component test methodology is the first key element of this study.
Technical Paper

Methodology for Testing of Spot-Welded Steel Connections Under Static and Impact Loadings

2003-03-03
2003-01-0608
Spot-welds are the primary joining methods for steel sheet metals used in the manufacturing of automobile body structure. Often the impact responses are significantly affected by the characteristic properties, such as stiffness, failure strength, etc of spot-welds. In view of this, understanding the behavior and the properties of spot-welds under static and impact loadings are critical for accurate CAE analysis of vehicle impact events. To this end, a comprehensive DOE based spot-weld testing has been undertaken by considering a wide variety of variables. The test data thus obtained were analyzed to determine the requisite mechanical properties of spot-welds as a function of the key variables such as gage, yield strengths, speed, etc. Spot-weld connections have been tested for gages ranging from 0.7 to 3.0 mm using a unique specimen configuration developed at Ford.
Technical Paper

Modeling Energy Absorption and Deformation of Multicorner Columns in Lateral Bending

2006-04-03
2006-01-0123
The frame rail has an impact on the crash performance of body-on-frame (BOF) and uni-body vehicles. Recent developments in materials and forming technology have prompted research into improving the energy absorption and deformation mode of the frame rail design. It is worthwhile from a timing and cost standpoint to predict the behavior of the front rail in a crash situation through finite element techniques. This study focuses on improving the correlation of the frame component Finite Element model to physical test data through sensitivity analysis. The first part of the study concentrated on predicting and improving the performance of the front rail in a frontal crash [1]. However, frame rails in an offset crash or side crash undergo a large amount of bending. This paper discusses appropriate modeling and testing procedures for front rails in a bending situation.
Technical Paper

Modeling and Design for Vehicle Pitch and Drop of Body-on-Frame Vehicles

2005-04-11
2005-01-0356
Vehicle pitch and drop play an important role for occupant neck and head injury at frontal impact. The excessive vehicle header drop, due to vehicle pitch and drop during crash, induces aggressive interaction between occupant head and sun visor/header that causes serious head and neck injuries. For most of body-on-frame vehicles, vehicle pitch and drop have commonly been observed at frontal impact tests. It is because the vehicle body is pulled downward by frame rails, which bend down during crash. Hence, the challenges of frame design are not only to absorb crash energy but also to manage frame deformation for minimizing vehicle pitch and drop. In this paper, the finite element method is used to analyze frame deformation at full frontal impact. To ensure the quality of CAE model, a full vehicle FEA model is correlated to barrier tests. In addition, a study of CAE modeling affecting vehicle header drop is performed.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Technical Paper

Modeling of Spot Weld under Impact Loading and Its Effect on Crash Simulation

2006-04-03
2006-01-0959
Spot weld is the primary joining method to assemble the automotive body structure. In any crash events some separation of spot-welds can be expected. However, if this happens in critical areas of the vehicle it can potentially affect the integrity of the structure. It will be beneficial to identify such issues through CAE simulation before prototypes are built and tested. This paper reports a spot weld modeling methodology to characterize spot weld separation and its application in full vehicle crash simulation. A generalized two-node spring element with 6 DOF at each node is used to model the spot weld. Separation of spot welds is modeled using three alternative rupture criteria defined in terms of peak force, displacement and energy. Component level crash tests are conducted using VIA sled at various impact speeds to determine mean crush load and identify possible separation of welds.
X