Refine Your Search

Search Results

Viewing 1 to 9 of 9
Standard

DEFINITIONS OF ACOUSTICAL TERMS

1978-06-01
HISTORICAL
J1184_197806
This information report provides definitions of acoustical terms relating to sound insulation materials. Appropriate methods of test are being developed by SAE and where applicable, ASTM methods will be referenced.
Standard

LABORATORY MEASUREMENT OF THE AIRBORNE NOISE REDUCTION OF ACOUSTICAL MATERIALS

1989-05-01
HISTORICAL
J1400_198905
This SAE Recommended Practice establishes the test procedure, facilities, and instrumentation for determining the noise reduction characteristics of materials commonly installed in ground vehicles, marine, products, and aircraft to reduce noise levels. This document is intended to provide a means of rank ordering materials by utilizing facilities that do not necessarily meet all of the acoustical requirements in ASTM E 90, Laboratory Measurements of Airborne Sound Transmission Loss of Building Partitions. Latitude is permitted in certain test conditions to allow better correlation with in-use acoustical results.
Standard

LABORATORY MEASUREMENT OF THE AIRBORNE SOUND BARRIER PERFORMANCE OF AUTOMOTIVE MATERIALS AND ASSEMBLIES

1990-05-01
HISTORICAL
J1400_199005
This SAE Recommended Practice presents a test procedure for determining the airborne sound barrier performance of materials and composite assemblies commonly installed in surface vehicles and marine products. This document is intended to provide a means of rank ordering barrier materials according to their sound transmission loss. At each test frequency the transmission loss (TL) is projected from the measured noise reduction of the test specimen using a correlation factor (CF). The respective CF for the test condition is determined as the differences between the measured noise reduction (MNR) of a homogeneous limp panel, such as lead, and its calculated field-incidence transmission loss. Latitude is permitted in certain test conditions that do not necessarily conform to all of the acoustical requirements of ASTM E 90.
Standard

Laboratory Measurement of Vibration Damping Properties Using Mechanical Impedance Method at the Center of a Bar

2023-12-20
CURRENT
J3130_202312
This SAE Recommended Practice describes a laboratory test procedure for measuring the composite loss factor and bending stiffness properties of a system consisting of a damping material bonded to a vibrating bar which is excited at the center. The bar could be a steel, aluminum, glass, or other metal or composite bar that would be used in ground vehicles, marine products, and aircraft. The damping materials could be homogeneous, nonhomogeneous, a combination of homogeneous and nonhomogeneous, used in conjunction without or with an inelastic material (such as aluminum foil) in an extensional layer or a constrained layer configuration. The damping material could be a heat bondable material, adhesive backed sheet material, sprayable coating material, or other kinds of viscoelastic materials. The damping procedure discussed here provides means to measure damping over a range of frequencies and temperatures found applicable and useable for different transportation systems.
Standard

Laboratory Measurement of the Composite Vibration Damping Properties of Materials on a Supporting Steel Bar

2022-02-17
CURRENT
J1637_202202
This SAE Standard describes a laboratory test procedure for measuring the vibration damping performance of a system consisting of a damping material bonded to a vibrating cantilevered steel bar. The bar is often called the Oberst bar (named after Dr. H. Oberst) and the test method is often called the Oberst bar test method. Materials for damping treatments may include homogeneous materials, nonhomogeneous materials, or a combination of homogeneous, nonhomogeneous, and/or inelastic (such as aluminum foil) materials. These materials are commonly installed in transportation systems such as ground vehicles, marine products, and aircraft to reduce vibration at resonance, and thus reduce the noise radiation from the vibrating surface. The test method described herein was developed to rank order materials for application on panels using general automotive steel but also may be applicable to other situations or conditions.
Standard

Standard Formats for Presenting Acoustical Data

2011-06-08
HISTORICAL
J2629_201106
SAE developed this document and associated spreadsheets at the request of automobile manufacturers to help compare products from multiple suppliers using standard data presentation formats. This document includes several preferred formats for presenting acoustical data on materials, components, systems, or vehicles. These formats cover the range of acoustical tests commonly conducted in the automotive industry. These tests follow SAE and ASTM test practices as well as vehicle specific test methods. For each test, the details of samples and test conditions can be entered into an applicable electronic spreadsheet together with the acoustical results data. These data are then linked to standard graphical display(s) for each test. All manufacturers and suppliers in this industry are encouraged to present data and results in these formats.
Standard

Standard Formats for Presenting Acoustical Data

2011-05-01
HISTORICAL
J2629_201105
SAE developed this document at the request of automobile manufacturers to help compare products from multiple suppliers using standard data presentation formats. This document includes several preferred formats for presenting acoustical data on materials, components, systems, or vehicles. These formats cover the range of acoustical tests commonly conducted in the automotive industry. These tests follow SAE and ASTM test practices as well as vehicle specific test methods. For each test, the details of samples and test conditions are entered into an electronic template together with the acoustical results data. These data are then linked to standard graphical display(s) for each test. All manufacturers and suppliers in this industry are encouraged to present data and results in these formats. Although this practice was developed specifically for use in the automotive industry, the formats are useable in other industries and applications as well.
Standard

Standard Formats for Presenting Acoustical Data

2015-08-11
CURRENT
J2629_201508
SAE developed this document and associated spreadsheets at the request of automobile manufacturers to help compare products from multiple suppliers using standard data presentation formats. This document includes several preferred formats for presenting acoustical data on materials, components, systems, or vehicles. These formats cover the range of acoustical tests commonly conducted in the automotive industry. These tests follow SAE and ASTM test practices as well as vehicle specific test methods. For each test, the details of samples and test conditions can be entered into an applicable electronic spreadsheet together with the acoustical results data. These data are then linked to standard graphical display(s) for each test. All manufacturers and suppliers in this industry are encouraged to present data and results in these formats.
Standard

Vibration Damping Materials and Underbody Coatings

2014-06-06
CURRENT
J671_201406
The materials classified under this specification are: a Mastic vibration damping materials used to reduce the sound emanating from metal panels. b Mastic underbody coatings used to give protection and some vibration damping to motor vehicle underbodies, fenders, and other parts.
X