Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Advances in Experimental Vehicle Soiling Tests

2020-04-14
2020-01-0681
The field of vision of the driver during wet road conditions is essential for safety at all times. Additionally, the safe use of the increasing number of sensors integrated in modern cars for autonomous driving and intelligent driver assistant systems has to be ensured even under challenging weather conditions. To fulfil these requirements during the development process of new cars, experimental and numerical investigations of vehicle soiling are performed. This paper presents the surface contamination of self- and foreign-soiling tested in the wind tunnel. For these type of tests, the fluorescence method is state-of-the-art and widely used for visualizing critical areas. In the last years, the importance of parameters like the contact angle have been identified when designing the experimental setup. In addition, new visualization techniques have been introduced.
Technical Paper

An Innovative Test System for Holistic Vehicle Dynamics Testing

2019-04-02
2019-01-0449
In the automotive industry, there is a continued need to improve the development process and handle the increasing complexity of the overall vehicle system. One major step in this process is a comprehensive and complementary approach to both simulation and testing. Knowledge of the overall dynamic vehicle behavior is becoming increasingly important for the development of new control concepts such as integrated vehicle dynamics control aiming to improve handling quality and ride comfort. However, with current well-established test systems, only separated and isolated aspects of vehicle dynamics can be evaluated. To address these challenges and further merge the link between simulation and testing, the Institute of Internal Combustion Engines and Automotive Engineering (IVK), University of Stuttgart is introducing a new Handling Roadway (HRW) Test System in cooperation with The Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS) and MTS Systems Corporation.
Technical Paper

Comparison of Different Ground Simulation Techniques for Use in Automotive Wind Tunnels

1990-02-01
900321
The range of applicability and the physical restrictions for the use of ground-simulation techniques in automotive wind tunnels are elucidated. The techniques considered are the moving-belt technique, as well as boundary layer control techniques like tangential blowing and distributed normal suction for use in wind tunnels with stationary ground boards. Attention has to be paid to the question of whether the flow to be simulated is of boundary layer or Couette type. In the case of boundary layer flow, interaction of the ground-floor boundary layer with the inviscid flow in the gap between a vehicle and the road can be fully simulated by introducing a negative transpiration velocity along the stationary ground plane. In practise however, angularity effects on the external flow result from mismatched control parameters. Very small relative ground clearances give rise to the formation of a Couette flow between the road and the vehicle.
Journal Article

Investigation of Transient Aerodynamic Effects on Public Roads in Comparison to Individual Driving Situations on a Test Site

2020-04-14
2020-01-0670
Natural wind, roadside obstacles, terrain roughness, and traffic influence the incident flow of a vehicle driven on public roads. These transient on-road conditions differ from the idealized statistical steady-state flow environment utilized in CFD simulations and wind tunnel experiments. To understand these transient on-road conditions better, measurements were performed on German public highways and on a test site. A compact car was equipped with a measurement system that is capable of determining the transient airflow around the vehicle and the vehicle’s actual driving state. This vehicle was driven several times on a predefined 200 km long route to investigate different traffic densities on public highways in southern Germany. During the tests the transient incident flow and pressure distribution on the vehicle surface were measured.
Journal Article

New Motion Cueing Algorithm for Improved Evaluation of Vehicle Dynamics on a Driving Simulator

2017-03-28
2017-01-1566
In recent years, driving simulators have become a valuable tool in the automotive design and testing process. Yet, in the field of vehicle dynamics, most decisions are still based on test drives in real cars. One reason for this situation can be found in the fact that many driving simulators do not allow the driver to evaluate the handling qualities of a simulated vehicle. In a driving simulator, the motion cueing algorithm tries to represent the vehicle motion within the constrained motion envelope of the motion platform. By nature, this process leads to so called false cues where the motion of the platform is not in phase or moving in a different direction with respect to the vehicle motion. In a driving simulator with classical filter-based motion cueing, false cues make it considerably more difficult for the driver to rate vehicle dynamics.
Technical Paper

Road Load Determination Based on Driving-Torque-Measurement

2003-03-03
2003-01-0933
This paper introduces a driving-torque measurement method for the determination of vehicle road load and its components. To increase the accuracy, the torque measurements are combined with rolling resistance measurements performed with a specially developed trailer. This method is a strictly experimental approach and does not use any mathematical models. The experimental techniques are described as well as the proceedings to compare test stand and road measurements. The results that are shown prove that this method is suitable for the investigation of single road load components. Furthermore, the comparison of different rolling resistance measurement devices shows the potential of the measurement trailer and the necessity to perform rolling resistance measurements on real road surfaces and not solely on test stands.
Journal Article

Simulation of Transient On-Road Conditions in a Closed Test Section Wind Tunnel Using a Wing System with Active Flaps

2020-04-14
2020-01-0688
Typical automotive research in wind tunnels is conducted under idealized, stationary, low turbulence flow conditions. This does not necessarily reflect the actual situation in traffic. Thus, there is a considerable interest to simulate the actual flow conditions. Because of this, a system for the simulation of the turbulence intensity I, the integral linear scale L and the transient angle of incidence β measured in full-scale tests in the inflow of a test vehicle was developed and installed in a closed-loop, closed test section wind tunnel. The system consists of four airfoils with movable flaps and is installed in the beginning of the test section. Time-series of the flow velocity vector are measured in the empty test section to analyze the system’s envelope in terms of the turbulence intensity and the integral length scales.
Journal Article

Subjective Perception and Evaluation of Driving Dynamics in the Virtual Test Drive

2017-03-28
2017-01-1564
In addition to the analysis of human driving behavior or the development of new advanced driver assistance systems, the high simulation quality of today’s driving simulators enables investigations of selected topics pertaining to driving dynamics. With high reproducibility and fast generation of vehicle variants the subjective evaluation process leads to a better system understanding in the early development stages. The transfer of the original on-road test run to the virtual reality of the driving simulator includes the full flexibility of the vehicle model, the maneuver and the test track, which allows new possibilities of investigation. With the opportunity of a realistic whole-vehicle simulation provided by the Stuttgart Driving Simulator new analysis of the human’s thresholds of perception are carried out.
Journal Article

The Effect of Center Belt Roughness on Vehicle Aerodynamics

2009-04-20
2009-01-0776
Recently built or refurbished wind tunnel facilities show a trend towards a detailed simulation of road conditions. Therefore, these wind tunnel facilities are equipped with boundary layer conditioning systems and a rolling road consisting of one or several belts in order to simulate the rotation of the wheels and the relative motion between the vehicle underfloor and the road. Belts are either realized in rubber or steel. Steel belts offer the possibility to be coated with rubber to protect the belt itself. This coating additionally offers the possibility to attain a certain roughness to represent the road surface. This paper presents measurements of the roughness of the steel belt systems installed in the IVK Model Scale and Aero-Acoustic Full Scale Wind Tunnel in comparison to road surfaces. Additionally, the influence of roughness on the aerodynamic coefficients drag and lift is presented and discussed for the SAE reference body with different rear end configurations.
Journal Article

The Effect of High Turbulence Intensities on Surface Pressure Fluctuations and Wake Structures of a Vehicle Model

2009-04-20
2009-01-0001
The unsteady environment road vehicles are exposed to is subject of many investigations that are currently made. Yet, the approaching flow is only one aspect of unsteady forces acting on the vehicle. Unsteady wake structures also lead to time-varying surface pressures and consequently fluctuating forces even in steady and low turbulent flows. However, little is known about the influence of realistic flow conditions, i.e. as found on road, on the unsteady surface pressures and wake structures of a vehicle. Therefore, to derive a deeper understanding of the unsteady aerodynamic properties of a vehicle this paper presents results of measurements conducted on a vehicle body both in smooth and turbulent flow conditions in the IVK model scale wind tunnel. Unsteady surface pressure measurements in the area where separation occurs and the base of the vehicle were made together with time accurate total pressure measurements in the wake.
Technical Paper

The Influence of Rotating Wheels on Total Road Load

2007-04-16
2007-01-1047
Within in the scope of a road load investigation project at FKFS, the influence of rotating wheels on the road load of a passenger car was investigated. For this purpose an approach was developed to measure the ventilation resistance of a spinning wheel. This approach enables a comparison of different wheel sizes and rim designs. Together with aerodynamic drag measurements in the wind tunnel it is possible to evaluate different wheel configurations with respect to their contribution to the road load. The measuring approach and results of performed measurements are shown in this paper.
X