Refine Your Search

Topic

null

Affiliation

Search Results

Technical Paper

Advancements in Crash Sensing

2000-11-01
2000-01-C036
The crash modes that occur each day on streets and highways have not changed dramatically over the past 50 years. The need to better understand those crash modes and their relation to rapidly emerging, tailorable restraint systems has intensified recently. The algorithms necessary for predicting a deployment event are based on an approach of coupling the occupant kinematics in a crash to the sensing technology that will activate the restraint system. This paper describes methods of computer modeling, occupant sensing and vehicle crash dynamics to define a crash sensing system that reacts to a complex set of input conditions to invoke an effective restraint response.
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Technical Paper

Assessment of 3 and 6-Year-Old Neck Injury Criteria Based on Field Investigation, Modeling, and Sled Testing

2006-04-03
2006-01-0253
The intent of this study was to compare the neck responses measured from the Hybrid III 3 and 6-year-old ATDs in laboratory testing to injuries sustained by three children in a field crash and investigate the appropriateness of recommended in-position neck injury assessment reference values (IARVs), and the regulated out-of-position (OOP) IARVs specified in FMVSS 208 for the Hybrid III 3 and 6-year-old ATDs. This paper principally reports on apparent artifacts associated with the Hybrid III 3 and 6-year-old ATDs, which complicated investigating the appropriateness of the in-position and out-of-position neck IARVs. In tests using 3-point belt restraints, these apparent artifacts included: 1) High neck extension moments, which produced the peak Nij values, without significant observed relative head-to-neck motion, 2) Neck tension forces well in excess of the IARVs that occurred when the ATD's chin contacted the chest.
Technical Paper

Considerations for a Femur Injury Criterion

1977-02-01
770925
A femur fracture injury criterion is presented that assesses the dependence of the permissible human knee load on the duration of the primary force exposure. Currently a constant allowable femur load limit of 7.6 kN (1700 lb) is specified in FMVSS 208, but recently the Federal Government proposed elevating the allowable limit to 10.0 kN (2250 lb), which is in excess of the limited experimental average static femur fracture force of 8.90 kN (2000 lb). A general analysis of all of the available biomechanics data and mathematical models on femoral impact response and fracture indicates a significant load time dependence for primary pulse durations below 20 ms that can elevate the permissible femur load above the Federally proposed allowable limit of 10.0 kN (2250 lb).
Technical Paper

Critical Issues in Finite Element Modeling of Head Impact

1982-02-01
821150
Current finite element models of head impact involve a geometrically simplified fluid-filled shell composed of homogeneous, linear and (visco) elastic materials as the primary surrogate of the human skull and brain. The numerical procedure, which solves the mechanical response to impact, requires and presumes continuity of stress and displacement between elements, a defined boundary condition simulating the neck attachment and a known forcing function. Our critical review of the models discussed, primarily, the technical aspects of the approximations made to simulate the head and the limitations of the proposed analytical tools in predicting the response of biological tissue. The following critical features were identified as major factors which compromised the accuracy and objectivity of the models: - The brain was approximated by a fluid contained in an elastic or rigid shell with no provision for relative motion between the shell and fluid.
Technical Paper

Determining Tolerance to Compression and Viscous Injury in Frontal and Lateral Impacts

1990-10-01
902330
Considerable research has shown that there are two mechanisms of blunt injury. One is by crushing the tissue at low velocities of deformation (compression mechanism, C) and the other by a rate-dependent deformation at higher speeds that exceed the energy dissipation of the tissue (viscous mechanism, VC). Analysis of injury causation in experiments must consider both mechanisms. For an impact, there is a peak compression and Viscous response; however, it is not possible a priori to determine which mechanism is associated with the injury. Thus, there has been a need to identify the effective velocity separating the two mechanisms of injury. This study provides new injury tolerances and probability functions for various body and tissue impacts based on injury data related to a compression or viscous mechanism. Six data sets were subjected to statistical analysis to predict injury based on maximum compression and Viscous response of the surrogate or tissue.
Technical Paper

Factors Influencing Knee Restraint

1979-02-01
790322
A planar mathematical model was developed to provide means of studying factors which can influence the function of lower torso restraint via a padded lower instrument panel or knee bolster. The following factors were judged to play the most significant role: 1) initial fore-and-aft position of the seated occupant relative to the knee restraint; 2) location of the knee-to-bolster contact; 3) angular orientation of the bolster face; 4) primary axis of the bolster resisting force, 5) variations in vehicle crash parameters (e.g., toepan rotation and displacement and seat deflection); and 6) deformation characteristics of the bolster. The model of a seated occupant included radiographic and empirical data on the anatomy of the links and joints in the lower extremity.
Technical Paper

Fracture-Dislocation of the Thoracic Spine in Extension by Upright Seats in Severe Rear Crashes

2011-04-12
2011-01-0274
Purpose: This study presents cases of fracture-dislocation of the thoracic spine in extension during severe rear impacts. The mechanism of injury was investigated. Methods: Four crashes were investigated where a lap-shoulder-belted, front-seat occupant experienced fracture-dislocation of the thoracic spine and paraplegia in a severe rear impact. Police, investigator and medical records were reviewed, the vehicle was inspected and the seat detrimmed. Vehicle dynamics, occupant kinematics and injury mechanisms were determined in this case study. Results: Each case involved a lap-shoulder-belted occupant in a high retention seat with ≻1,700 Nm moment or ≻5.5 kN strength for rearward loading. The crashes were offset rear impacts with 40-56 km/h delta V involving under-ride or override by the impacting vehicle and yaw of the struck vehicle. In each case, the occupant's pelvis was restrained on the seat by the open perimeter frame of the seatback and lap belt.
Journal Article

Front Seat Performance in Rear Impacts: Effect on 1st and 2nd Row Occupant Injury

2009-04-20
2009-01-0252
Purpose: This study analyzes the effect of front seat performance on occupant injury in rear crashes where there is a 2nd row passenger seated behind the front occupant. Methods: The study was carried out for rear impact crashes in the 1991–2006 NASS-CDS. Only cases where there was a 2nd row occupant seated behind an occupied front seat were chosen. Serious injury (MAIS 3+F) was determined for the front and 2nd row occupants. The performance of the front seat was determined using eight NASS-CDS investigator categories, including no failure, seat failure of the adjuster, seatback or track-anchor and seat deformation by the occupant or intrusion. The rear crashes were subdivided into four severities (<15, 15–25, 25–45 and >45 mph). The risk for serious injury was determined for each category of seat performance. Next, individual cases were reviewed from the online NASS electronic files to better understand the determination of seat performance by the NASS-CDS investigators.
Technical Paper

High Retention Seat Performance in Quasistatic Seat Tests

2003-03-03
2003-01-0173
A new generation of seats has been designed to specifications for high retention (HR) in a Quasistatic Seat Test (QST). The QST involves occupant loading of the seat in a rearward direction and targets peak H-point moment to >1700 Nm giving an energy transfer capability of 2000 J. QST tests from 1998-2000 were compared to results from pre-HR seat designs of the late 1980s and early 1990s to determine performance improvements. Twenty-seven QST tests of HR seats were randomly selected from a larger series and were evaluated for strength and seat deformation under occupant loading. They represented 20 different seat types from four suppliers. Averages and standard deviations in QST results were computed. In addition, eight repeat tests were conducted with one seat to determine repeatability of the QST. These data were compared to an earlier repeatability study of the 1994 W pre-HR seat, which was evaluated at two facilities.
Technical Paper

How and When Blunt Injury Occurs — Implications to Frontal and Side Impact Protection

1988-10-01
881714
The timing of liver laceration in swine during the course of a blunt impact was investigated. The swine were impacted on the upper abdomen by the lower segment of a steering wheel at 6, 9 and 12 m/s. The degree of compression in each impact was controlled independently from 10 to 50%. By varying when “the punch of an impact was pulled,” we reproduced progressive segments of a longer duration blunt impact. Autopsy of the subjects demonstrated that lacerations were initiated after 8 ms of loading at 9 m/s and 6 ms of loading at 12 m/s. The time of injury was concurrent with the time when the Viscous response exceeded a threshold of 1.2 m/s in our specimens. The Viscous injury criterion, defined as the peak Viscous response, was found to be the best predictor of liver laceration. We conclude that the Viscous response relates to the actual etiology of injury, in addition to being an excellent correlative measure.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Influence of Crush Orientation on Knee Bolster Function in Barrier Crash Simulation

1980-06-01
800852
Barrier crash simulations with a torsobelted Part 572 dummy were conducted to determine the influence of knee bolster crush orientations of 0°–60° on lower extremity restraint. Responses from two sled velocity and mean deceleration severities were investigated: 6.6 m/s at 7.5 g and 13.5 m/s at 13.9 g. The dummy’s knees were prepositioned 10 cm from individual experimental bolsters, which crushed along a predetermined axis. Bolster orientation had only a minor effect on the level of peak dummy femur, and resultant knee bolster reaction load and on lower extremity kinematics of the torsobelted occupant; however, the local loading of the knee and level of tibial compression were significantly influenced.
Technical Paper

Influence of Initial Length of Lap-Shoulder Belt on Occupant Dynamics-A Comparison of Sled Testing and MVMA–2D Modeling

1980-09-01
801309
The primary purpose of this parameter study was to carefully document occupant dynamics in well-controlled sled tests for comparison with simulated responses from the MVMA-2D analytical model. The test involved a Part 572 dummy exposed to a frontal deceleration while on a bucket seat and restrained by a lap-shoulder belt system. The length of belt webbing was incrementally increased from a snug configuration by as much as 30 cm. The addition of webbing increased the forward excursion, velocity, and acceleration of the head, chest, and hip without affecting the peak tension in the belt segments of the restraint system. Belt tension was identified as a poor measure of the horizontal load on the chest due to significant reaction forces in the lateral and vertical direction at the belt anchorages.
Technical Paper

Influence of Lateral Restraint on Occupant Interaction with a Shoulder Belt or Preinflated Air Bag in Oblique Impacts

1981-02-01
810370
Sled tests were conducted at farside oblique angles of 15°, 45°, and 75° with a Part 572 dummy restrained by a conventional driver lap/shoulder belt system or a preinflated driver inflatable restaint. Occupant dynamics were compared in similar tests where an inboard energy absorbing lateral restraint of the upper torso was or was not used. It can be concluded that the seat wing improves the control of the dummy's dynamics in oblique impacts by directing the occupant's motion more forward into the restraint system, thereby taking more advantage of the restraining potential of the shoulder belt or inflatable restraint in controlling the deceleration of the dummy and enhancing the benefit of the restraint system. However, additional factors associated with the use of a seat wing remain to be investigated including the effect of impact force on the occupant, interaction with out-of-position occupants and comfort/convenience.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Technical Paper

Influence of the Surrogate in Laboratory Evaluation of Energy-Absorbing Steering System

1984-10-01
841660
Various surrogates and responses are available for study of the impact performance of energy absorbing steering systems in the laboratory. The relative influence of the SAE J-944 body block, the Part 572 dummy, and the GM Hybrid III dummy and of the associated thoracic responses were investigated for steering assembly impact in a series of sled tests. Not only did response amplitudes differ among the surrogates but more importantly trends in impact performance associated with modifications of the steering assembly depended on the choice of surrogate and response. The Hybrid III dummy was judged the best of the tested surrogates for study of the steering system impact performance in the laboratory, based on its more humanlike construction, impact response and expanded measurement capacity.
Technical Paper

Investigation of Impact Response and Fracture of the Human Femur by Finite Element Modeling

1976-02-01
760773
The mechanical response of a plane strain finite element model depicting an axial midsection of a human femur is investigated for both static and dynamic condylar loadings. An elastic bi-medium structure composed of compact and cancellous bone is used to represent the femur. Critically stressed locations are identified and associated static and dynamic load levels which may initiate femur fracture are calculated. The predicted fracture sites and load levels are found to be in good agreement with published data for cadaver knee impacts. An important conclusion of this investigation is that the peak stress or strain and therefore femoral tolerance significantly depends on the impact duration due to stimulation of structural resonances.
Technical Paper

Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model

2008-11-03
2008-22-0001
The objective of this study was to investigate potential for traumatic brain injuries (TBI) using a newly developed, geometrically detailed, finite element head model (FEHM) within the concept of a simulated injury monitor (SIMon). The new FEHM is comprised of several parts: cerebrum, cerebellum, falx, tentorium, combined pia-arachnoid complex (PAC) with cerebro-spinal fluid (CSF), ventricles, brainstem, and parasagittal blood vessels. The model's topology was derived from human computer tomography (CT) scans and then uniformly scaled such that the mass of the brain represents the mass of a 50th percentile male's brain (1.5 kg) with the total head mass of 4.5 kg. The topology of the model was then compared to the preliminary data on the average topology derived from Procrustes shape analysis of 59 individuals. Material properties of the various parts were assigned based on the latest experimental data.
Technical Paper

Laboratory Study of Factors Influencing the Performance of Energy Absorbing Steering Systems

1982-02-01
820475
The study was directed toward improving our understanding how postcrash column compression and steering wheel deformation relate to the driver interaction with an energy absorbing steering system during automotive collisions. Frontal sled tests conducted at 19–37 km/h investigated the Part 572 antropomorphic dummy interaction with a ball-sleeve column steering assembly over a range of column angles and surrogate postures. Neither column compression nor steering wheel deformation correlated with the mechanical severity of the test surrogate interaction with the steering system. The steering wheel deformed before the column compressed and the degree of wheel deformation strongly depended on the surrogate load distribution, the steering wheel being an important energy absorbing element.
X