Refine Your Search

Topic

Author

Search Results

Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

A Comparison of the Response of HSLA and Dual Phase Sheet Steel in Dynamic Crush

2001-10-16
2001-01-3101
Continuing pressure to reduce mass and cost of vehicles is driving the development of new high strength steel products with improved combinations of strength and formability. Galvanized, cold rolled dual phase steel products are new alternatives to conventional high strength low alloy (HSLA) steel for strength limited applications in vehicles. These steels have higher tensile strengths than HSLA products with nearly equivalent formability. This paper compares the performance of HSLA and dual phase sheet steel products in a series of drop tower tests. Samples were prepared by stamping the steel sheets into typical rail-type parts using a production-intent die process. The parts were sectioned, and subsequently fabricated into hat-shaped assemblies that were then dynamically crushed by a drop weight. The experiments were designed such that the entire energy input by the drop weight was absorbed by the samples.
Technical Paper

A Practical Approach to Consider Forming Effects for Full Vehicle Crash Application

2009-04-20
2009-01-0471
The forming effects along with strain rate, actual material properties and weld effects have been found to be very critical for accurate prediction of crash responses especially the prediction of local deformation. As a result, crash safety engineers started to consider these factors in crash models to improve the accuracy of CAE prediction and reduce prototype testing. The techniques needed to incorporate forming simulation results, including thickness change, residual stresses and strains, in crash models have been studied extensively and are well known in automotive CAE community. However, a challenge constantly faced by crash safety engineers is the availability of forming simulation results, which are usually supplied by groups conducting forming simulations. The forming simulation results can be obtained by either using incremental codes with actual stamping processes or one-step codes with final product information as a simplified approach.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

An Evaluation of Interface Friction in Different Forming Models for Coated Steel Sheets

1992-02-01
920633
Interface friction between sheet metal and tooling in sheet metal forming is examined in different forming modes using laboratory simulative tests. Stretchability is studied by the limiting dome height test; drawability is investigated by a four inch Swift cup draw test and the coefficient of friction is measured by the draw bead simulator under bending and unbending deformation. The responses of the interface friction in six different coated and uncoated steel sheets are studied using seven different lubricants. It is found that the interface friction between sheet metal and tooling is very sensitive to the forming mode and the type of coating. For the same lubricant and coated material, two different forming modes may produce very different results in interface friction. However, overall good and bad lubricants for all forming modes can be determined for a given coated material using these three tests.
Technical Paper

An Investigation of Spot-Welded Steel Connections Using a DOE Approach

2003-03-03
2003-01-0612
This paper presents an investigation into the behavior of spot-welded steel connections based on a DOE approach. This work is a part of spot-weld modeling methodology development work being performed at Ford. Control factors such as material, coating, gage size, and noise factors such as loading direction (angle), and speed are considered in this study. Different levels of each variable are included to cover a wide range of practical applications. The test methodology used to generate the responses for the spot-weld coupons have been discussed in a companion paper [1]. From the force-displacement curves obtained from the test, the responses such as peak force, displacement at peak force, and rupture displacement are identified. These responses are then statistically analyzed to identify the relative importance and effect of the design factors. Finally, response surface models are developed to determine responses across different levels of each variable.
Technical Paper

Approaches to Modeling the Dynamic Interaction for an Automotive Seat and Occupant System

2007-04-16
2007-01-0988
There are a wide variety of approaches to model the automotive seat and occupant interaction. This paper traces the studies conducted for simulating the occupant to seat interaction in frontal and/or rear crash events. Starting with an initial MADYMO model, a MADYMO-LS/DYNA coupled model was developed. Subsequently, a full Finite Element Analysis model using LS/DYNA was studied. The main objective of the studies was to improve the accuracy and efficiency of CAE models for predicting the dummy kinematics and structural deformations at the restraint attachment locations in laboratory tests. The occupant and seat interaction was identified as one of the important factors that needed to be accurately simulated. Quasi-static and dynamic component tests were conducted to obtain the foam properties that were input into the model. Foam specimens and the test setup are discussed. Different material models in LS/DYNA were evaluated for simulating automotive seat foam.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

Crashworthiness Simulation of Lower Control Arm Impact Tests

2005-04-11
2005-01-0361
Finite element models of cast aluminum and stamped steel lower control arms (LCAs) were created to simulate subsystem tests of LCA with bushings and brackets. Several modeling methods were used to simulate the dynamic responses of cast aluminum LCAs, and the advantages and disadvantages of each method are discussed. Factors that are essential for modeling stamped steel components found in previous studies [1, 2] including strain rate, forming, and welding effects are incorporated in the stamped steel LCA models. Difficulties in modeling LCAs subsystem, possible remedies, and further improvements are also discussed in this paper.
Technical Paper

Data Processing For CAE Material Input With Strain Rate Effects

2005-04-11
2005-01-0359
Strain rate effects have been identified as one of the most critical factors for the modeling of vehicle components in many previous investigations. The strain rate data available to the authors have been processed to obtain the input decks of a required material law in prior investigations. With the application of strain rate modeling, the strain rate database needs to be expanded. In order to continuously improve the safety CAE quality and efficiency, especially the prediction of a vehicle's pulse in a crash event, the effort has been made to include more strain rate data and extend the material database for safety CAE applications. In this study, strain rate data provided by Ispat Inland Inc. for AISI/DOE Technology Roadmap Program are processed. The material processed in this study include HSS590-CR, 440W-GA, BH300-GI, HSLA350-GI, DP600-HR, TRIP590-EG, TRIP600-CR, TRIP780-CR.
Technical Paper

Determination of Spot Weld Modeling Parameters from Test Data for Finite Element Crash Simulation

2004-03-08
2004-01-0692
The authors have proposed a new formulation to characterize the mechanical properties of spot welds under dynamic loadings including separation. In this paper, the authors primarily discuss a systematic procedure to determine the parameters of the proposed spot weld model from test data using a Design of Experiment (DOE) approach and statistical analyses. All analysis pertaining to the spot weld modeling under impact loading has been performed using RADIOSS, a commercially available explicit FE crash solver. In this study, the spot weld connection was modeled using a two-node beam-type spring element with 6 DOF at each node, and the sheet metal was modeled using a four-node shell element. The main objective was to develop a spot weld modeling methodology that is accurate and robust enough to be used in a full vehicle model which is composed of hundreds of different parts and will be crashed under different test conditions.
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Development of a Target Vehicle Model For Vehicle-To-Vehicle Simulations: Part II Vehicle-To-Vehicle Impactsy

2002-03-04
2002-01-0248
The objective of this study is to verify the performance of a target vehicle model in vehicle-to-vehicle impact applications. In some vehicle-to-vehicle tests, the target vehicle stays the same and the bullet vehicle changes from test to test depending on the programs under evaluation. To obtain reasonable crash pulse predictions in vehicle-to-vehicle impacts, it was decided to develop an accurate and robust target vehicle model first. The development of the target vehicle model was divided into two phases, rigid barrier and vehicle-to-vehicle impacts. Twelve rigid barrier tests, including full rigid barriers, angular rigid barriers, offset rigid barriers, and fixed rigid poles were adopted in the first phase of the study to calibrate the target vehicle model. The results of the study have been reported [1]. This paper focuses on the verification of vehicle-to-vehicle impacts.
Technical Paper

Development of a Target Vehicle Model for Vehicle-to-Vehicle Frontal Compatibility Applications

2001-03-05
2001-01-1055
An accurate and robust target vehicle model was developed for vehicle compatibility applications. Although vehicle compatibility simulation involves a bullet vehicle hitting a target vehicle, the focus of this paper is to develop a target vehicle model. To ensure the robustness, the target vehicle model needs to provide reasonable responses under different impact conditions. This can be achieved by calibrating the model against different physical tests. Significant effort was taken to improve the accuracy of the target vehicle model. In the calibration process, some components were found to have significant effects on the global responses. These components play different roles in different crash modes. To improve the overall correlation with test, different component tests were also designed and conducted to understand the characteristics and improve the modeling of these critical components.
Technical Paper

Development of a Target Vehicle Model for Vehicle-to-Vehicle Simulations: Part I Rigid Barrier Impacts

2002-03-04
2002-01-0246
The objective of this study is to develop a target vehicle model for vehicle-to-vehicle impact applications. In order to provide reasonable predictions for crash pulses in vehicle-to-vehicle impacts, an accurate and robust target vehicle model was developed first. An ideal target vehicle model should be able to provide reasonable results when hit by different bullet vehicles at different impact speeds and under different impact conditions. This was achieved by calibrating the target vehicle model against different vehicle crash tests, which include full rigid barriers, angular rigid barriers, offset rigid barriers, and fixed rigid poles. Twelve rigid barrier tests were adopted in this study to calibrate the target vehicle model. During the calibration process, some of the vehicle structures were examined and remodeled carefully for their properties and mesh quality.
Technical Paper

Dynamic Testing and CAE Modeling of Body Mount An Application in the Frontal Impact Analysis of a Body-on-Frame Vehicle

2003-03-03
2003-01-0256
This study is a systematic investigation of the body mounts' dynamic characteristics in component, sub-system and full system levels and its application in the frontal impact analysis of a body-on-frame (BOF) vehicle. Concluded from the component study, the body mount is modeled by non-linear spring with built-in damage and rupture properties. The sub-system study reveals the importance of modeling the interaction between the body mount and its surrounding structure. A general-purpose interaction modeling is developed to provide a realistic CAE simulation of this interaction behavior. The full system is mainly for methodology validation. Four 90-degree frontal and the one IIHS offset frontal crash tests are used to evaluate the performance of the body mount in low and high speeds and its capability of predicting the body mount and the floor pan failures.
Technical Paper

Dynamic Testing and CAE Modeling of Engine Mounts and their Application in Vehicle Crash Analysis

2003-03-03
2003-01-0257
This study summarizes the latest development of the methodologies for testing and CAE modeling of the engine mount. A systematic approach is used in this study with detailed component, subsystem and full system level investigations. The component level study reveals the entangling phenomenon of the inertial and rate effects in the engine mount dynamic characteristics. In the subsystem, the interaction between the engine mount and its surrounding structure is explored. The full system study is primarily used to validate the CAE methodology for engine mounts developed in the component and subsystem level studies. Four full vehicle barrier crash tests, with different crash modes and speeds, are employed in this validation phase to evaluate the performance of the engine mount CAE methodology.
X