Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

An Analytical Model to Study the Infant Seat/Airbag Interaction

1992-02-01
920126
As passenger-side airbags are introduced into the vehicle fleet, consideration must be given to the possible interaction of the airbag with children and child restraint systems. Specifically, a rear-facing infant seat may represent an out-of-position occupanVrestraint system in relation to the deploying airbag due to the limited distance between the infant seat and the instrument panel. Current safety standards for child restraints do not address this issue and the potential for serious injury mandates further analysis. Simulation studies can assist in understanding the behavior of such interaction and help to reduce the number of tests to evaluate infant seat performance. New developments in simulation technology offer state-of-the-art tools to simulate a deploying airbag using a finite element model while the occupant, infant seat and vehicle interior are simulated with linked rigid body systems.
Technical Paper

Application of a Finite Element-Based Human Arm Model for Airbag Interaction Analysis

2004-06-15
2004-01-2147
Interaction of the human arm and deploying airbag has been studied in the laboratory using post mortem human subjects (PMHS). These studies have shown how arm position on the steering wheel and proximity to the airbag prior to deployment can influence the risk of forearm bone fractures. Most of these studies used older driver airbag modules that have been supplanted by advanced airbag technology. In addition, new numerical human body models have been developed to complement, and possibly replace, the human testing needed to evaluate new airbag technology. The objective of this study is to use a finite element-based numerical (MADYMO) model, representing the human arm, to evaluate the effects of advanced driver airbag parameters on the injury potential to the bones of the forearm. The paper shows how the model is correlated to Average Distal Forearm Speed (ADFS) and arm kinematics from two PMHS tests.
Technical Paper

Assessment of 3 and 6-Year-Old Neck Injury Criteria Based on Field Investigation, Modeling, and Sled Testing

2006-04-03
2006-01-0253
The intent of this study was to compare the neck responses measured from the Hybrid III 3 and 6-year-old ATDs in laboratory testing to injuries sustained by three children in a field crash and investigate the appropriateness of recommended in-position neck injury assessment reference values (IARVs), and the regulated out-of-position (OOP) IARVs specified in FMVSS 208 for the Hybrid III 3 and 6-year-old ATDs. This paper principally reports on apparent artifacts associated with the Hybrid III 3 and 6-year-old ATDs, which complicated investigating the appropriateness of the in-position and out-of-position neck IARVs. In tests using 3-point belt restraints, these apparent artifacts included: 1) High neck extension moments, which produced the peak Nij values, without significant observed relative head-to-neck motion, 2) Neck tension forces well in excess of the IARVs that occurred when the ATD's chin contacted the chest.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Dummy Head Kinematics in Tripped Rollover Tests and a Test Method to Evaluate the Effect of Curtain Airbag Deployment

2002-03-04
2002-01-0690
A tripped rollover is one of several types of rollover initiations. Developing a curtain airbag system for occupant protection in tripped rollovers requires the knowledge of the occupant kinematics prior to tripping. As a vehicle experiences lateral deceleration prior to the trip initiation, the unrestrained dummy head is already in motion and may be close to the vehicle interior or at the side glass plane. If the vehicle is equipped with a curtain airbag system, it may be difficult to trigger the curtain deployment prior to the dummy interacting with the vehicle side structure due to the degree of difficulty in discriminating between a roll and no roll situation early enough in the event. For such conditions, a curtain airbag restraint system should be designed so that it deploys and positions itself properly as the dummy head is approaching the side glass plane or in the deployment zone.
Technical Paper

Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading

2009-11-02
2009-22-0001
This study evaluated the response of restrained post-mortem human subjects (PMHS) in 40 km/h frontal sled tests. Eight male PMHS were restrained on a rigid planar seat by a custom 3-point shoulder and lap belt. A video motion tracking system measured three-dimensional trajectories of multiple skeletal sites on the torso allowing quantification of ribcage deformation. Anterior and superior displacement of the lower ribcage may have contributed to sternal fractures occurring early in the event, at displacement levels below those typically considered injurious, suggesting that fracture risk is not fully described by traditional definitions of chest deformation. The methodology presented here produced novel kinematic data that will be useful in developing biofidelic human models.
Technical Paper

Investigation of Traumatic Brain Injuries Using the Next Generation of Simulated Injury Monitor (SIMon) Finite Element Head Model

2008-11-03
2008-22-0001
The objective of this study was to investigate potential for traumatic brain injuries (TBI) using a newly developed, geometrically detailed, finite element head model (FEHM) within the concept of a simulated injury monitor (SIMon). The new FEHM is comprised of several parts: cerebrum, cerebellum, falx, tentorium, combined pia-arachnoid complex (PAC) with cerebro-spinal fluid (CSF), ventricles, brainstem, and parasagittal blood vessels. The model's topology was derived from human computer tomography (CT) scans and then uniformly scaled such that the mass of the brain represents the mass of a 50th percentile male's brain (1.5 kg) with the total head mass of 4.5 kg. The topology of the model was then compared to the preliminary data on the average topology derived from Procrustes shape analysis of 59 individuals. Material properties of the various parts were assigned based on the latest experimental data.
Technical Paper

ROLLOVER: A METHODOLOGY FOR RESTRAINT SYSTEM DEVELOPMENT

2001-06-04
2001-06-0217
Concern about crash conditions other than frontal and side crashes has accelerated restraint development with respect to rollover events. Previous analysis of rollover field data indicates the high probability of ejection and consequent serious injury or death to unbelted occupants. Partial ejection of belted occupants may also occur. Restraint development has focused on belt technologies and more recently, airbag systems as a method to reduce ejection and injury risk. Effective restraint development for these emerging technologies should consider a combined approach of field injury data analysis, computer simulation of rollover, corresponding validated test data and hardware development techniques. First, crash data was analyzed for identified rollover modes (crash sequences) and injured body regions. This helped to determine possible restraint interventions.
Technical Paper

Simulation of Occipitoatlantoaxial Injury Utilizing a MADYMO Model

2004-03-08
2004-01-0326
Injuries of the Occipitoatlantoaxial (Occ-C2) region (also known as atlanto-occipital injuries) are the most common form of cervical injury in children aged ten years and younger. The crash studied in this paper is unique in that there were three children ages 3, 6 and 7 involved in a frontal crash with a delta V of 28mph with each child receiving a nonfatal Occ-C2 injury of varying degrees. The 3 and 6 year-old children were remarkably similar in height and weight to the 3 and 6 year-old Hybrid III ATD's. Also, unique to this case is the fact that the right rear 6 year-old occupant likely sustained an Occ-C2 injury prior to impact with the frame of the front passenger seat. This crash environment was recreated utilizing MADYMO occupant simulation software. The models for the Hybrid III 3 and 6 year-old ATDs were used to represent the occupants in this crash.
Technical Paper

Thoraco-Abdominal Deflection Responses of Post Mortem Human Surrogates in Side Impacts

2012-10-29
2012-22-0002
The objective of the present study was to determine the thorax and abdomen deflections sustained by post mortem human surrogate (PMHS) in oblique side impact sled tests and compare the responses and injuries with pure lateral tests. Oblique impact tests were conducted using modular and non-modular load-wall designs, with the former capable of accommodating varying anthropometry. Tests were conducted at 6.7 m/s velocity. Deflection responses from chestbands were analyzed from 15 PMHS tests: five each from modular load-wall oblique, non-modular load-wall oblique and non-modular load-wall pure lateral impacts. The thorax and abdomen peak deflections were greater in non-modular load-wall oblique than pure lateral tests. Peak abdomen deflections were statistically significantly different while the upper thorax deflections demonstrated a trend towards significance.
X