Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1974 Accident Experience with Air Cushion Restraint Systems

1975-02-01
750190
An air cushion restraint system has been available to the public on certain model passenger cars since January 1974. In response to this opportunity to obtain field experience, the National Highway Traffic Safety Administration has established a nationwide reporting network and investigative capability for accidents involving air-bag equipped cars. The reporting criteria for accidents require that the car be towed as a result of the accident, or that a front-seat occupant was injured, or that bag deployment occurred. The principal objective is to obtain the injury-reducing effectiveness of this restraint system in the total accident environment. This environment encompasses “towaway” accidents resulting in bag deployment and non-deployment. Definitive results are expected at the conclusion of the study. This paper summarizes the experience during the first year of the program, during which time the rate of accident occurrence was far less than originally expected.
Technical Paper

2-Color Thermometry Experiments and High-Speed Imaging of Multi-Mode Diesel Engine Combustion

2005-10-24
2005-01-3842
Although in-cylinder optical diagnostics have provided significant understanding of conventional diesel combustion, most alternative combustion strategies have not yet been explored to the same extent. In an effort to build the knowledge base for alternative low-temperature combustion strategies, this paper presents a comparison of three alternative low-temperature combustion strategies to two high-temperature conventional diesel combustion conditions. The baseline conditions, representative of conventional high-temperature diesel combustion, have either a short or a long ignition delay. The other three conditions are representative of some alternative combustion strategies, employing significant charge-gas dilution along with either early or late fuel injection, or a combination of both (double-injection).
Standard

2-D CAD Template for SAE J826 H-point Machine

2022-02-18
CURRENT
J826/2_202202
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Standard

2-D CAD Template for SAE J826 H-point Machine

2016-10-13
HISTORICAL
J826/2_201610
This document describes the 2-D computer-aided design (CAD) template for the HPM-1 H-point machine or HPD available from SAE. The elements of the HPD include the curve shapes, datum points and lines, and calibration references. The intended purpose for this information is to provide a master CAD reference for design and benchmarking. The content and format of the data files that are available are also described.
Technical Paper

2-D Measurements of the Liquid Phase Temperature in Fuel Sprays

1995-02-01
950461
Cross-sectional distributions of the liquid phase temperatures in fuel sprays were measured using a laser-induced fluorescence technique. The liquid fuel (n-hexadecane or squalane) was doped with pyrene(C16H10). The fluorescence intensity ratios of the pyrene monomer and excimer emissions has temperature dependence, and were used to determine the liquid phase temperatures in the fuel sprays. The measurements were performed on two kinds of sprays. One was performed on pre-heated fuel sprays injected into surrounding gas at atmospheric conditions. The other was performed on fuel sprays exposed to hot gas flow. The spray was excited by laser radiation at 266nm, and the resulting fluorescence was imaged by an intensified CCD camera. The cross-sectional distribution of the liquid phase temperature was estimated from the fluorescence image by the temperature dependence of the intensity ratio.
Technical Paper

2003 Chevrolet Kodiak and GMC TopKick Airbag Sensing System Development

2002-11-18
2002-01-3101
Airbag systems have been part of passenger car and truck programs since the mid-1980's. However, systems designed for medium and heavy duty truck applications are relatively new. The release of airbag systems for medium duty truck has provided some unique challenges, especially for the airbag sensing systems. Because of the many commercial applications within the medium duty market, the diversity of the sensing environments must be considered when designing and calibrating the airbag sensing system. The 2003 Chevrolet Kodiak and GMC TopKick airbag sensing development included significant work, not only on the development of airbag deployment events but also non-deployment events – events which do not require the airbag to deploy. This paper describes the process used to develop the airbag sensing system deployment events and non-deployment event used in the airbag sensing system calibration.
Technical Paper

21st Century Lunar Exploration: Advanced Radiation Exposure Assessment

2006-07-17
2006-01-2106
On January 14, 2004 President George W Bush outlined a new vision for NASA that has humans venturing back to the moon by 2020. With this ambitious goal, new tools and models have been developed to help define and predict the amount of space radiation astronauts will be exposed to during transit and habitation on the moon. A representative scenario is used that includes a trajectory from LEO to a Lunar Base, and simplified CAD models for the transit and habitat structures. For this study galactic cosmic rays, solar proton events, and trapped electron and proton environments are simulated using new dynamic environment models to generate energetic electron, and light and heavy ion fluences. Detailed calculations are presented to assess the human exposure for transit segments and surface stays.
Technical Paper

3-D Video Sensor for Dynamic Out-of-Position Sensing, Occupant Classification and Additional Sensor Functions

2005-04-11
2005-01-1232
A 3-D video sensor designed for in-vehicle operation is presented in this paper. This sensor enables improved occupant protection according to the Federal Motor Vehicle Safety Standard (FMVSS) 208 and beyond. Interior sensors integrated in current occupant protection systems are especially designed for Occupant Classification (OC). However, these interior sensors do not measure the distance between the head and the air bag module. As a result, the air bags deploy independently from the occupants' Out-Of-Position (OOP) status in crash situations. On the contrary, the sensor presented in this paper overcomes this shortcoming by providing dynamic Out-Of-Position Sensing (OOPS) capabilities in addition to occupant classification. The requirements of dynamic OOPS are discussed and an appropriate test device and test procedure are described. Furthermore, the paper presents the sensor principle, the hardware architecture and algorithms for image data processing.
Technical Paper

3-Dimensional Lightning Observations Using a Time-of-Arrival Lightning Mapping System

2001-09-11
2001-01-2881
A lightning mapping system has been developed that locates the sources of VHF radiation from lightning discharges in three spatial dimensions and time. The system consists of several VHF receivers distributed over an area of about 100 km diameter. The system locates VHF radiation sources over the array with an accuracy of about 100 m. The system locates sources out to 250 km from the center of the array with reduced accuracy. The observations are found to reflect the basic charge structure of electrified storms.
Technical Paper

3D Audio Reproduction via Headrest Equipped with Loudspeakers—Investigations on Acoustical Design Criteria

2020-09-30
2020-01-1567
This paper focuses on the analysis and evaluation of acoustical design criteria to produce a plausible 3D sound field solely via headrest with integrated loudspeakers at the driver/passenger seats in the car cabin. Existing audio systems in cars utilize several distributed loudspeakers to support passengers with sound. Such configurations suffer from individual 3D audio information at each position. Therefore, we present a convincing minimal setup focusing sound solely at the passenger’s ears. The design itself plays a critical role for the optimal reproduction and control of a sound field for a specific 3D audio application. Moreover, the design facilitates the 3D audio reproduction of common channel-based, scene-based, and object-based audio formats. In addition, 3D audio reproduction enables to represent warnings regarding monitoring of the vehicle status (e.g.: seat belts, direction indicator, open doors, luggage compartment) in spatial accordance.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

2008-11-03
2008-22-0011
According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.
Technical Paper

3D Simulation Methodology to Predict Passenger Thermal Comfort Inside a Cabin

2021-09-15
2021-28-0132
The vehicle Heating, Ventilation and Air conditioning (HVAC) system is designed to meet both the safety and thermal comfort requirements of the passengers inside the cabin. The thermal comfort requirement, however, is highly subjective and is usually met objectively by carrying out time dependent mapping of parameters like the velocity and temperature at various in-cabin locations. These target parameters are simulated for the vehicle interior for a case of hot soaking and its subsequent cool-down to test the efficacy of the AC system. Typically, AC performance is judged by air temperature at passenger locations, thermal comfort estimation along with time to reach comfortable condition for human. Simulating long transient vehicle cabin for thermal comfort evaluation is computationally expensive and involves complex cabin material modelling.
Technical Paper

56 Development of two-cylinder liquid-cooled utility gasoline engine models with twin balancer shafts

2002-10-29
2002-32-1825
The new small and lightweight 2-cylinder liquid-cooled OHC gasoline engines were developed. These new engines are featuring high output, low vibration and noise radiation and so able to improve the comfortableness and amenity of applied utility machines. In this paper, the features of the new engines and the process to realize development targets are introduced. The basic structure adopted on the new engines is a liquid-cooled, inline 2-cyilinder layout with 360-degree firing intervals, twin balancer shafts, and an overhead camshaft that is driven by a cogged belt. Also various parts made of aluminum alloy and plastics could make the engine lighter. By these measures, the new engines could satisfy their hardest development targets, and realize their easy installation, higher versatility, and have the excellent features such as compact size, lightweight, high output, low exhaust gas emission and low vibration and noise radiation.
Technical Paper

5G Network Connectivity Automated Test and Verification for Autonomous Vehicles Using UAVs

2022-03-29
2022-01-0145
The significance and the number of vehicle safety features enabled via connectivity continue to increase. OnStar, with its automatic airbag notification, was one of the first vehicle safety features that demonstrate the enhanced safety benefits of connectivity. Vehicle connectivity benefits have grown to include remote software updates, data analytics to aid with preventative maintenance and even to theft prevention and recovery. All of these services require available and reliable connectivity. However, except for the airbag notification, none have strict latency requirements. For example, software updates can generally be postponed till reliable connectivity is available. Data required for prognostic use cases can be stored and transmitted at a later time. A new set of use cases are emerging that do demand continuous, reliable and low latency connectivity. For example, remote control of autonomous vehicles may be required in unique situations.
Technical Paper

5th Percentile Driver Out of Position Computer Simulation

2000-03-06
2000-01-1006
A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

A 30 mph Front/Rear Crash with Human Test Persons

1979-02-01
791030
A great deal of data is available concerning accident simulation tests with test dummies or cadavers but in comparison there is very little material on tests involving living volunteers. This paper describes crash tests and sled tests with human test persons and Hybrid II dummies. To obtain a realistic accident simulation the tests were run with standard Audi 80 vehicles fitted with the standard seat belt systems. The results clearly demonstrate that none of the test persons sustain any kind of physical injury at a precisely defined level of accident severity (vehicle-to-vehicle crash at a collision speed of approx. 30 mph). In some cases considerable differences are revealed between the loadings imposed on the dummies and the human test persons.
Technical Paper

A BASIC AIRBAG MODEL

1972-02-01
720426
A mathematical simulation of the operation of a compressed-gas airbag system is developed. A system was built and tested, and the analysis is evaluated on the basis of these tests. Included in the study are nonideal gas effects, manifold and diffuser effects, bag stretch, bag leakage, and overpressurization of the passenger compartment. Interaction between a single rigid object and the bag is also considered. A correlation between bag pressure and the force it generates is obtained. This allows the development of an analytic model for determining the motion of a single rigid mass interacting with a dynamically inflating airbag mounted in a moving vehicle. An application of the model to study rebound of the occupant from the airbag is presented.
Technical Paper

A Baseband Radar System for Auto Braking Application

1978-02-01
780262
This paper describes a BAseband Radar (BAR) sensor for radar braking application; an early version of the BAR concept was reported previously as a precollision sensor for air bag activation. In this paper we show how the normally wide effective beamwidth of the BAR is narrowed by using interferometry in conjunction with a novel delay line digital processor scheme. The beamwidth of the breadboard system spans a traffic lane width at 45 meters. The paper describes the details of the BAR sensor front-end and preliminary test results sponsored by the U.S. Department of Transportation and the Institute for Telecommunication Sciences.
Technical Paper

A Basic Study of “Energy-Absorbing” Vehicle Structure and Occupant Restraints by Mathematical Model

1967-02-01
670897
Simplified mathematical modeling has been employed to investigate the relationship between automobile forestructure energy absorption and the restraint loads applied to passengers during a 30 mph barrier collision. A two-massmodel was developed and validated to compute restraint loading from a given passenger compartment deceleration. The effect of various deceleration curves, representing forestructure modifications, is reported. A “constant force” restraint system is also evaluated.
X