Refine Your Search

Topic

null

Search Results

Viewing 1 to 12 of 12
Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

Acoustics and Drivability as the Main Drivers for Customer Satisfaction for electrified 2-Wheeler

2020-01-24
2019-32-0525
Along with the global trend for electrification, also motorcycle industry is entering new spheres of highly advanced products and is increasing customer demands for electric mobility. Beside hard facts such as performance, driving range, durability and ease of use, also the brand specific attributes such as styling, driveability and even sound for electrified 2-wheeler are very emotional, unique selling prepositions. To determine the subjective parameters for driveability and acoustics, AVL has developed dedicated tools and methods to quantify these attributes with high maturity. In terms of acoustics and NVH there are several crucial noise sources within electrified powertrains, which have to be treated with high attention from the initial development phase to avoid any kind of unforeseen annoyances: E-motor with inverter, transmission and secondary drive are most relevant. This issue becomes even more important with the ongoing market trend of products featuring increased power.
Technical Paper

Additive Manufacturing in Powertrain Development – From Prototyping to Dedicated Production Design

2024-04-09
2024-01-2578
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining modular component technology with integration and industrialization requirements when heading for further significant efficiency optimization. At the same time focus on reduced development time, product cost and minimized additional investment demand reuse of current production, machining, and assembly facilities as far as possible. Up to date additive manufacturing (AM) is an established prototype component, as well as tooling technology in the powertrain development process, accelerating procurement time and cost, as well as allowing to validate a significantly increased number of variants. The production applications of optimized, dedicated AM-based component design however are still limited.
Journal Article

CO2 Reduction Potential through Improved Mechanical Efficiency of the Internal Combustion Engine: Technology Survey and Cost-Benefit Analysis

2013-04-08
2013-01-1740
The need for significant reduction of fuel consumption and CO₂ emissions has become the major driver for development of new vehicle powertrains today. For the medium term, the majority of new vehicles will retain an internal combustion engine (ICE) in some form. The ICE may be the sole prime mover, part of a hybrid powertrain or even a range extender; in every case potential still exists for improvement in mechanical efficiency of the engine itself, through reduction of friction and of parasitic losses for auxiliary components. A comprehensive approach to mechanical efficiency starts with an analysis of the main contributions to engine friction, based on a measurement database of a wide range of production engines. Thus the areas with the highest potential for improvement are identified. For each area, different measures for friction reduction may be applicable with differing benefits.
Journal Article

Compact Engine Architecture for Best Fuel Efficiency and High Performance - Challenge or Contradiction

2011-11-08
2011-32-0595
The world of automotive engineering shows a clear direction for upcoming development trends. Stringent fleet average fuel consumption targets and CO2 penalties as well as rising fuel prices and the consumer demand to lower operating costs increases the engineering efforts to optimize fuel economy. Passenger car engines have the benefit of higher degree of technology which can be utilized to reach the challenging targets. Variable valve timing, downsizing and turbo charging, direct gasoline injection, highly sophisticated operating strategies and even more electrification are already common technologies in the automotive industry but can not be directly carried over into a motorcycle application. The major differences like very small packaging space, higher rated speeds, higher power density in combination with lower production numbers and product costs do not allow implementation such high of degree of advanced technology into small-engine applications.
Technical Paper

Current Findings in Measurement Technology and Measurement Methodology for RDE and Fuel Consumption for Two-Wheeler-Applications

2017-11-05
2017-32-0041
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
Technical Paper

Development of Smart Drive 48V e-Motorcycle

2022-01-09
2022-32-0002
The electrification of two-wheelers is advancing significantly faster than that of the automobile, especially in Asia [1]. Along with this global trend for electrification, especially motorcycle industry is entering new spheres of highly advanced products and has to meet the increasing customer demands for electric mobility. Beside hard facts such as performance, driving range, durability and ease of use, also the brand specific attributes such as styling, driveability and even sound for electrified 2-wheeler are very emotional, unique selling prepositions. To determine the subjective parameters for driveability and acoustics, dedicated tools and methods have been developed and used to quantify these attributes with high maturity. A battery-electric motorcycle has been developed to experimentally prove the achievement of premium subjective attributes. Commercially available products have been taken as benchmark reference.
Technical Paper

Fuel Economy Development for a CVT Powertrain on Roller-Chassis Dynamometer and Transfer to Dynamic Engine Testbed

2017-11-05
2017-32-0064
The motorcycle and small engine industry is entering a chapter where emission legislation (EU5, BS6) is adapted to the automotive industries and especially CO2 emission is coming more and more into the focus of the OEMs, the legislative authorities and finally the end-user. Technologies like variable valve actuation, direct gasoline injection and turbo charging are state of the art in the automotive industry and have brought the efficiency of the internal combustion engine onto the next level. Nevertheless the small engine manufacturers are seeking for solutions which are cost efficient as well as simple and easy to apply. Even powertrain complexity is increasing the development efforts have to be kept moderate. Therefore, there is strong request for modern instrumentation and Testbeds which support an efficient and effective development process.
Technical Paper

Results, Assessment and Legislative Relevance of RDE and Fuel Consumption Measurements of Two-Wheeler-Applications

2017-11-05
2017-32-0042
The reduction of environmentally harmful gases and the ambitions to reduce the exploitation of fossil resources lead to stricter legislation for all mobile sources. Legislative development significantly affected improvements in emissions and fuel consumptions over the last years, mainly measured under laboratory conditions. But real world operating scenarios have a major influence on emissions and it is already well known that these values considerably differ from officially published figures [1]. There are regulated emissions by the European Commission by means of real driving scenarios for passenger cars. A methodology to measure real drive emissions RDE is therefore well approved for automotive applications but was not adapted for two-wheeler-applications yet [2]. Hence measurements have been performed on-road and on chassis dynamometer for motorcycles with the state of the art RDE measurement equipment to be prepared for possible future legislation.
Technical Paper

Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets

2013-10-07
2013-36-0438
For achieving the forthcoming CO2 emission targets of 95g/km by 2020 and for the years beyond, comprehensive activities for powertrain technology as well as development methodology has to be utilized. It will by far not be enough to add a few single technology features to achieve the desired result. More and more the success will result from comprehensive combining of synergetic utilization of complementary effects. This will be the powertrain perfectly matched to the vehicle, including the energy source, and all together integrated by means of advanced development tools and methodology.
Technical Paper

The Hybrid Engine - Challenge between GHG-Legislation, Efficiency Targets, Product Cost and Production Boundaries

2022-03-29
2022-01-0593
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining component technology with integration and industrialization requirements when heading for further significant efficiency optimization of the subsystem internal combustion engine. The requirements on the combustion engine in hybrid powertrains are quite different to those in a conventional powertrain solution. Next-generation hybrid engines, with brake thermal efficiency (BTE) targets starting from 42-43% and aiming for 45% and above within the product lifecycle, require a re-thinking of the base engine architecture of current modular engine platforms. At the same time focus on the product cost and minimized additional investment demand reuse of current production, machining and assembly facilities as far as possible.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
X