Refine Your Search

Topic

Search Results

Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2012-07-26
HISTORICAL
J2931/4_201207
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the Plug-In Vehicle (PEV) and the Electric Vehicle Supply Equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or Home Area Network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2014-10-21
HISTORICAL
J2931/4_201410
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Broadband PLC Communication for Plug-in Electric Vehicles

2023-05-24
CURRENT
J2931/4_202305
This SAE Technical Information Report SAE J2931/4 establishes the specifications for physical and data-link layer communications using broadband Power Line Communications (PLC) between the plug-In electric vehicle (PEV) and the electric vehicle supply equipment (EVSE) DC off-board-charger. This document deals with the specific modifications or selection of optional features in HomePlug Green PHY v1.1 (HomePlug GP1.1) necessary to support the automotive charging application over Control Pilot lines as described in SAE J1772™. PLC may also be used to connect directly to the Utility smart meter or home area network (HAN), and may technically be applied to the AC mains, both of which are outside the scope of this document.
Standard

Communication for Plug-in Vehicles as a Distributed Energy Source

2021-03-23
HISTORICAL
J2847/3_202103
This document applies to a plug-in electric vehicle (PEV) which is equipped with an onboard inverter and communicates using IEEE 2030.5-2018. It is a supplement to the SEP2 standard, which supports the use cases defined by SAE J2836/3. It provides guidance for the use of the SEP2 distributed energy resource function set with a PEV. It also provides guidance for the use of the SEP2 flow reservation function set, when used for discharging. It is not intended to be a comprehensive guide to the use of SEP2 in a PEV. Note that in this document, SEP2 is used interchangeably with IEEE 2030.5-2018.
Standard

Dynamic Wireless Power Transfer for both Light and Heavy Duty Vehicles (SAE RP J2954/3)

2023-04-20
WIP
J2954/3
The SAE J2954 standard establishes an industry-wide specification that defines acceptable criteria for Light Duty EVs and SAE RP J2954/2 establishes the same for Heavy Duty. SAE RP SAE J2954. SAE RP J2954/3 establishes interoperability, electromagnetic compatibility, EMF, minimum performance, safety, and testing for dynamic wireless power transfer (D-WPT) of both light and heavy duty plug-in electric vehicles. The specification defines various charging levels that are based on the levels defined for SAE J1772 conductive AC charge levels as SAE J2954/1 & SAE J2954/2 with some variations. A standard for WPT based on these charge levels enables selection of a charging rate based on vehicle requirements, thus allowing for better vehicle packaging and ease of customer use. SAE J2954/3 addresses unidirectional charging, from grid to vehicle; bidirectional energy transfer may be evaluated for a future standard.
Standard

Electric Vehicle Charging Adapter Safety and OEM Qualified Device Designation

2023-12-01
WIP
J3400/1
This document covers the general physical, electrical, functional, and performance requirements for adapters connected to standards conforming conductive power transfer via handheld conductive coupler capable of transferring either DC or single-phase power using two current-carrying contacts. The focus is on defining the process to evaluate the suitability of adapters to SAE J3400 vehicle inlets.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2024-04-23
WIP
J3105
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices

2023-05-05
CURRENT
J3105_202305
This document covers the general physical, electrical, functional, testing, and performance requirements for conductive power transfer, primarily for vehicles using a conductive ACD connection capable of transferring DC power. It defines conductive power transfer methods, including the infrastructure electrical contact interface, the vehicle connection interface, the electrical characteristics of the DC supply, and the communication system. It also covers the functional and dimensional requirements for the vehicle connection interface and supply equipment interface. New editions of the documents shall be backwards compatible with the older editions. There are also sub-documents which are identified by a SAE J3105/1, SAE J3105/2, and SAE J3105/3. These will be specific requirements for a specific interface defined in the sub-document.
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Infrastructure-Mounted Pantograph (Cross-Rail) Connection

2023-05-05
CURRENT
J3105/1_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/1 details the infrastructure-mounted pantograph, or cross-rail connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated connection device (ACD) based on a cross-rail design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Electric Vehicle Power Transfer System Using Conductive Automated Connection Devices Vehicle-Mounted Pantograph (Bus-Up)

2023-05-05
CURRENT
J3105/2_202305
This document details one of the connections of the SAE J3105 document. The connections are referenced in the scope of the main document SAE J3105. SAE J3105/2 details the vehicle-mounted pantograph, or the bus-up connection. All the common requirements are defined in the main document; the current document provides the details of the connection. This document covers the connection interface relevant requirements for an electric vehicle power transfer system using a conductive automated charging device based on a conventional rail vehicle pantograph design. To allow interoperability for on-road vehicles (in particular, buses and coaches), one configuration is described in this document. Other configurations may be used for non-standard applications (for example, mining trucks or port vehicles).
Standard

Energy Transfer System for Electric Vehicles - Part 2: Communication Requirements and Network Architecture

2014-02-26
CURRENT
J2293/2_201402
SAE J2293 establishes requirements for Electric Vehicles (EV) and the off-board Electric Vehicle Supply Equipment (EVSE) used to transfer electrical energy to an EV from an Electric Utility Power System (Utility) in North America. This document defines, either directly or by reference, all characteristics of the total EV Energy Transfer System (EV-ETS) necessary to insure the functional interoperability of an EV and EVSE of the same physical system architecture. The ETS, regardless of architecture, is responsible for the conversion of AC electrical energy into DC electrical energy that can be used to charge the Storage Battery of an EV, as shown in Figure 1. The different physical ETS system architectures are identified by the form of the energy that is transferred between the EV and the EVSE, as shown in Figure 2. It is possible for an EV and EVSE to support more than one architecture.
Standard

Guidelines for Electric Vehicle Safety

2020-10-13
CURRENT
J2344_202010
This SAE Information Report identifies and defines the preferred technical guidelines relating to safety for vehicles that contain High Voltage (HV), such as Electric Vehicles (EV), Hybrid Electric Vehicles (HEV), Plug-In Hybrid Electric Vehicle (PHEV), Fuel Cell Vehicles (FCV) and Plug-In Fuel Cell Vehicles (PFCV) during normal operation and charging, as applicable. Guidelines in this document do not necessarily address maintenance, repair, or assembly safety issues.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2022-09-30
CURRENT
J1715_202209
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Terminology

2021-05-28
HISTORICAL
J1715_202105
This SAE Information Report contains definitions for HEV, PHEV, and EV terminology. It is intended that this document be a resource for those writing other HEV, PHEV, and EV documents, specifications, standards, or recommended practices.
Standard

Hybrid and Electric Vehicle Safety Systems Information Report

2020-11-04
CURRENT
J2990/2_202011
This information report provides an overview of a typical high voltage electric propulsion vehicle (xEV) and the associated on-board safety systems typically employed by OEM’s to protect these high voltage systems. The report aims to improve public confidence in xEV safety systems and dispel public misconceptions about the likelihood of being shocked by the high voltage system, even when the vehicle has been damaged. The report will document select high voltage systems used for xEV’s and describe safety systems employed to prevent exposure to the high voltage systems.
Standard

Instructions for Using Plug-In Electric Vehicle (PEV) Communications, Interoperability and Security Documents

2023-10-30
WIP
J2836
This SAE Information Report J2836 establishes the instructions for the documents required for the variety of potential functions for PEV communications, energy transfer options, interoperability and security. This includes the history, current status and future plans for migrating through these documents created in the Hybrid Communication and Interoperability Task Force, based on functional objective (e.g., (1) if I want to do V2G with an off-board inverter, what documents and items within them do I need, (2) What do we intend for V3 of SAE J2953, …).
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2023-03-31
WIP
J3072
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Interconnection Requirements for Onboard, Grid Support Inverter Systems

2021-03-10
CURRENT
J3072_202103
This SAE J3072 Standard establishes requirements for a grid support inverter system function which is integrated into a plug-in electric vehicle (PEV) which connects in parallel with an electric power system (EPS) by way of conductively coupled, electric vehicle supply equipment (EVSE). This standard also defines the communication between the PEV and the EVSE required for the PEV onboard inverter function to be configured and authorized by the EVSE for discharging at a site. The requirements herein are intended to be used in conjunction with IEEE 1547 and IEEE 1547.1. This standard shall also support interactive inverters which conform to the requirements of IEEE 1547-2003 and IEEE 1547.1-2005, recognizing that many utility jurisdictions may not authorize interconnection.
Standard

Megawatt Charging System for Electric Vehicles

2021-12-15
WIP
J3271
This document describes the megawatt-level DC charging system requirements for couplers/inlets, cables, cooling, communication and interoperability. The intended application is for commercial vehicles with larger battery packs requiring higher charging rates for moderate dwell time. A simplified analog safety signaling approach is used for connection-detection to guarantee de-energized state for unmated couplers with superimposed high speed data for EVSE-EV charging control and other value added services.
Standard

North American Charging System (NACS) for Electric Vehicles

2024-01-24
WIP
J3400
This Recommended Practice covers the general physical, electrical, functional, safety, and performance requirements for conductive power transfer to an electric vehicle using a connector, which can be hand-mated and is capable of transferring either DC or AC single-phase power using two current-carrying contacts.
X