Refine Your Search

Topic

Search Results

Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines

1993-10-01
932708
This paper provides an overview of spark-ignition engine unburned hydrocarbon emissions mechanisms, and then uses this framework to relate measured engine-out hydrocarbon emission levels to the processes within the engine from which they result. Typically, spark-ignition engine-out HC levels are 1.5 to 2 percent of the gasoline fuel flow into the engine; about half this amount is unburned fuel and half is partially reacted fuel components. The different mechanisms by which hydrocarbons in the gasoline escape burning during the normal engine combustion process are described and approximately quantified. The in-cylinder oxidation of these HC during the expansion and exhaust processes, the fraction which exit the cylinder, and the fraction oxidized in the exhaust port and manifold are also estimated.
Technical Paper

Charge Cooling Effects on Knock Limits in SI DI Engines Using Gasoline/Ethanol Blends: Part 1-Quantifying Charge Cooling

2012-04-16
2012-01-1275
Gasoline/ethanol fuel blends have significant synergies with Spark Ignited Direct Injected (SI DI) engines. The higher latent heat of vaporization of ethanol increases charge cooling due to fuel evaporation and thus improves knock onset limits and efficiency. Realizing these benefits, however, can be challenging due to the finite time available for fuel evaporation and mixing. A methodology was developed to quantify how much in-cylinder charge cooling takes place in an engine for different gasoline/ethanol blends. Using a turbocharged SI engine with both Port Fuel Injection (PFI) and Direct Injection (DI), knock onset limits were measured for different intake air temperatures for both types of injection and five gasoline/ethanol blends. The superior charge cooling in DI compared to PFI for the same fuel resulted in pushing knock onset limits to higher in-cylinder maximum pressures. Knock onset is used as a diagnostic of charge cooling.
Technical Paper

Combustion Optimization in a Hydrogen-Enhanced Lean-Burn SI Engine

2005-04-11
2005-01-0251
As part of ongoing research on hydrogen-enhanced lean burn SI engines, this paper details an experimental combustion system optimization program. Experiments focused on three key areas: the ignition system, in-cylinder charge motion produced by changes in the inlet ports, and uniformity of fuel-air mixture preparation. Hydrogen enhancement is obtained with a H2, CO, N2 mixture produced by a fuel reformer such as the plasmatron. The ignition system tests compared a standard inductive coil scheme against high-energy discharge systems. Charge motion experiments focused on the impact of different flow and turbulence patterns generated within the cylinder by restrictor plates at the intake port entrance, as well as novel inlet flow modification cones. The in-cylinder fluid motion generated by each configuration was characterized using swirl and tumble flow benches. Mixture preparation tests compared a standard single-hole pintle port fuel injector against a fine atomizing 12-hole injector.
Technical Paper

Computer Models For Evaluating Premixed and Disc Wankel Engine Performance

1986-03-01
860613
This paper describes two types of computer models which have been developed to analyze the performance of both premixed-charge and direct-injection stratified-charge Wankel engines. The models are based on a thermodynamic analysis of the contents of the engine's chambers. In the first type of model, the rate of combustion is predicted from measured chamber pressure by use of a heat release analysis. The analysis includes heat transfer to the chamber walls, work transfer to the rotor, enthalpy loss due to flows into crevices and due to leakage flows into adjacent chambers, and enthalpy gain due to fuel injection. The second type of computer model may be used to predict the chamber pressure during a complete engine cycle. From the predicted chamber pressure, the overall engine performance parameters are calculated. The rate of fuel burning as an algebraic function of crank angle is specified.
Technical Paper

Development and Use of a Computer Simulation of the Turbocompounded Diesel System for Engine Performance and Component Heat Transfer Studies

1986-03-01
860329
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system has been developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multi-cylinder reciprocator diesel model where each cylinder undergoes the same thermodynamic cycle. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. This paper describes the basic system models and their calibration and validation against available experimental engine test data. The use of the model is illustrated by predicting the performance gains and the component design trade-offs associated with a partially insulated engine achieving a 40 percent reduction in heat loss over a baseline cooled engine.
Technical Paper

Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions

1979-02-01
790291
A computer simulation of the four-stroke spark-ignition engine cycle has been developed for studies of the effects of variations in engine design and operating parameters on engine performance, efficiency and NO emissions. The simulation computes the flows into and out of the engine, calculates the changes in thermodynamic properties and composition of the unburned and burned gas mixtures within the cylinder through the engine cycle due to work, heat and mass transfers, and follows the kinetics of NO formation and decomposition in the burned gas. The combustion process is specified as an input to the program through use of a normalized rate of mass burning profile. From this information, the simulation computes engine power, fuel consumption and NO emissions. Predictions made with the simulation have been compared with data from a single-cylinder CFR engine over a range of equivalence ratios, spark-timings and compression ratios.
Technical Paper

Divided-Chamber Diesel Engine, Part II: Experimental Validation of a Predictive Cycle-Simulation and Heat Release Analysis

1982-02-01
820274
In this study, a set of performance and emissions data, obtained from a single-cylinder divided-chamber automotive diesel engine over the normal engine operating range, is described and analyzed. The data are used to evaluate a computer simulation of the engine's operating cycle, described in a companion paper, which predicts the properties of gases inside the engine cylinder throughout the cycle, and engine efficiency, power and NOx emissions. Satisfactory agreement between predictions and measurements is obtained over most of the engine's operating range. The characteristics of the experimental pre- and main-chamber pressure versus crank angle data are then examined in detail. A heat release analysis appropriate for divided-chamber diesel engines is developed and used to obtain heat release rate profiles through the combustion process.
Technical Paper

Effects of Combustion Phasing, Relative Air-fuel Ratio, Compression Ratio, and Load on SI Engine Efficiency

2006-04-03
2006-01-0229
In an effort to both increase engine efficiency and generate new, consistent, and reliable data useful for the development of engine concepts, a modern single-cylinder 4-valve spark-ignition research engine was used to determine the response of indicated engine efficiency to combustion phasing, relative air-fuel ratio, compression ratio, and load. Combustion modeling was then used to help explain the observed trends, and the limitations on achieving higher efficiency. This paper analyzes the logic behind such gains in efficiency and presents correlations of the experimental data. The results are helpful for examining the potential for more efficient engine designs, where high compression ratios can be used under lean or dilute regimes, at a variety of loads.
Technical Paper

Effects of Hydrogen Enhancement on Efficiency and NOx Emissions of Lean and EGR-Diluted Mixtures in a SI Engine

2005-04-11
2005-01-0253
Dilute operation of a SI engine offers attractive performance incentives. Lowered combustion temperatures and changes in the mixture composition inhibit NOx formation and increase the effective value of the ratio of burned gas specific heats, increasing gross indicated efficiency. Additionally, reduced intake manifold throttling minimizes pumping losses, leading to higher net indicated efficiency. These benefits are offset by the reduced combustion speed of dilute fuel-air mixtures, which can lead to high cycle-to-cycle variation and unacceptable engine behavior characteristics. Hydrogen enhancement can suppress the undesirable consequences of dilute operation by accelerating the combustion process, thereby extending the dilution limit. Hydrogen would be produced on-board the vehicle with a gasoline reforming device such as the plasmatron. High dilution at higher loads would necessitate boosting to meet the appropriate engine specific power requirements.
Technical Paper

Flow Characteristics in Intake Port of Spark Ignition Engine Investigated by CFD and Transient Gas Temperature Measurement

1996-10-01
961997
A computational fluid dynamics (CFD) prediction of the transient flow in the intake system of a spark ignition engine is compared to experimental data. The calculation was performed for a single cylinder version of a pre-1995 Ford two-valve production engine, while experiments were carried out on a single cylinder Ricardo Mark 3 research engine with similar overall geometric parameters. While the two engines have somewhat different geometries, this was not considered to be a significant problem for our study of flow features. Both set-ups employed gaseous fuel. The calculation was performed using the commercially available Star-CD code incorporating the complete intake manifold runner and cylinder into the mesh. Cylinder pressures were in good agreement with experiment indicating that wave dynamics were well captured. Comparison was also made to the measured instantaneous gas temperatures along the intake system.
Technical Paper

Lean SI Engines: The role of combustion variability in defining lean limits

2007-09-16
2007-24-0030
Previous research has shown the potential benefits of running an engine with excess air. The challenges of running lean have also been identified, but not all of them have been fundamentally explained. Under high dilution levels, a lean limit is reached where combustion becomes unstable, significantly deteriorating drivability and engine efficiency, thus limiting the full potential of lean combustion. This paper expands the understanding of lean combustion by explaining the fundamentals behind this rapid rise in combustion variability and how this instability can be reduced. A flame entrainment combustion model was used to explain the fundamentals behind the observed combustion behavior in a comprehensive set of lean gasoline and hydrogen-enhanced cylinder pressure data in an SI engine. The data covered a wide range of operating conditions including different compression ratios, loads, types of dilution, fuels including levels of hydrogen enhancement, and levels of turbulence.
Technical Paper

Modeling NO Formation in Spark Ignition Engines with a Layered Adiabatic Core and Combustion Inefficiency Routine

2001-03-05
2001-01-1011
A thermodynamic based cycle simulation which uses a thermal boundary layer, either, a fully mixed or layered adiabatic core, and a crevice combustion inefficiency routine has been used to explore the sensitivity of NO concentration predictions to critical physical modeling assumptions. An experimental database, which included measurements of residual gas fraction, was obtained from a 2.0 liter Nissan engine while firing on propane. A model calibration methodology was developed to ensure accurate predictions of in-cylinder pressure and burned gas temperature. Comparisons with experimental NO data then showed that accounting for temperature stratification during combustion with a layered adiabatic core and including a crevice/combustion inefficiency routine, improved the match of modeling predictions to data, in comparison to a fully mixed adiabatic core.
Technical Paper

Modeling of Engine-Out Hydrocarbon Emissions for Prototype Production Engines

1995-02-01
950984
A model has been developed which predicts engine-out hydrocarbon (HC) emissions for spark-ignition engines. The model consists of a set of scaling laws that describe the individual processes that contribute to HC emissions. The model inputs are the critical engine design and operating variables. This set of individual process scaling relations was then calibrated using production spark-ignition engine data at a fixed light-load operating point. The data base consisted of engine-out HC emissions from two-valve and four-valve engine designs with variations in spark timing, valve timing, coolant temperature, crevice volume, and EGR, for five different engines. The model was calibrated separately for the three different engines to accommodate differences in engine design details and to determine the relative magnitudes of each of the major sources. A good fit to this database was obtained.
Technical Paper

Modeling the Dynamics and Lubrication of Three Piece Oil Control Rings in Internal Combustion Engines

1998-10-19
982657
The oil control ring is the most critical component for oil consumption and friction from the piston system in internal combustion engines. Three-piece oil control rings are widely used in Spark Ignition (SI) engines. However, the dynamics and lubrication of three piece oil control rings have not been thoroughly studied from the theoretical point of view. In this work, a model was developed to predict side sealing, bore sealing, friction, and asperity contact between rails and groove as well as between rails and the liner in a Three Piece Oil Control Ring (TPOCR). The model couples the axial and twist dynamics of the two rails of TPOCR and the lubrication between two rails and the cylinder bore. Detailed rail/groove and rail/liner interactions were considered. The pressure distribution from oil squeezing and asperity contact between the flanks of the rails and the groove were both considered for rail/groove interaction.
Technical Paper

Modeling the Spark Ignition Engine Warm-Up Process to Predict Component Temperatures and Hydrocarbon Emissions

1991-02-01
910302
In order to understand better the operation of spark-ignition engines during the warm-up period, a computer model had been developed which simulates the thermal processes of the engine. This model is based on lumped thermal capacitance methods for the major engine components, as well as the exhaust system. Coolant and oil flows, and their respective heat transfer rates are modeled, as well as friction heat generation relations. Piston-liner heat transfer is calculated based on a thermal resistance method, which includes the effects of piston and ring material and design, oil film thickness, and piston-liner crevice. Piston/liner crevice changes are calculated based on thermal expansion rates and are used in conjunction with a crevice-region unburned hydrocarbon model to predict the contribution to emissions from this source.
Technical Paper

Performance Maps of Turbocharged SI Engines with Gasoline-Ethanol Blends: Torque, Efficiency, Compression Ratio, Knock Limits, and Octane

2014-04-01
2014-01-1206
1 Downsizing and turbocharging a spark-ignited engine is becoming an important strategy in the engine industry for improving the efficiency of gasoline engines. Through boosting the air flow, the torque is increased, the engine can thus be downsized, engine friction is reduced in both absolute and relative terms, and engine efficiency is increased. However knock onset with a given octane rating fuel limits both compression ratio and boost levels. This paper explores the operating limits of a turbocharged engine, with various gasoline-ethanol blends, and the interaction between compression ratio, boost levels, and spark retard, to achieve significant increases in maximum engine mean effective pressure and efficiency.
Technical Paper

Performance Scaling of Spark-Ignition Engines: Correlation and Historical Analysis of Production Engine Data

2000-03-06
2000-01-0565
This study examines the scaling between engine performance, engine configuration, and engine size and geometry, for modern spark-ignition engines. It focuses especially on design features that impact engine breathing. We also analyze historical trends to illustrate how changes in technology have improved engine performance. Different geometric parameters such as cylinder displacement, piston area, number of cylinders, number of valves per cylinder, bore to stroke ratio, and compression ratio, in appropriate combinations, are correlated to engine performance parameters, namely maximum torque, power and brake mean effective pressure, to determine the relationships or scaling laws that best fit the data. Engine specifications from 1999 model year vehicles sold in the United States were compiled into a database and separated into two-, three-, and four-valves-per-cylinder engine categories.
Technical Paper

Performance and NOx Emissions Modeling of a Jet Ignition Prechamber Stratified Charge Engine

1976-02-01
760161
The development of a cycle simulation model for the jet ignition prechamber stratified charge engine is described. Given the engine geometry, load, speed, air-fuel ratios and pressures and temperatures in the two intakes, flow ratio and a suitable combustion model, the cycle simulation predicts engine indicated efficiency and NO emissions. The relative importance of the parameters required to define the combustion model are then determined, and values for ignition delay and burn angle are obtained by matching predicted and measured pressure-time curves. The variation in combustion parameters with engine operating variables is then examined. Predicted and measured NO emissions are compared, and found to be in reasonable agreement over a wide range of engine operation. The relative contribution of the prechamber NO to total exhaust NO is then examined, and in the absence of EGR, found to be the major source of NO for overall air-fuel ratios leaner than 22:1.
Technical Paper

Piston Fuel Film Observations in an Optical Access GDI Engine

2001-05-07
2001-01-2022
A gasoline direct injection fuel spray was observed using a fired, optical access, square cross-section single cylinder research engine and high-speed video imaging. Spray interaction with the piston is described qualitatively, and the results are compared with Computational Fluid Dynamics (CFD) simulation results using KIVA-3V version 2. CFD simulations predicted that within the operating window for stratified charge operation, between 1% and 4% of the injected fuel would remain on the piston as a liquid film, dependent primarily on piston temperature. The experimental results support the CFD simulations qualitatively, but the amount of fuel film remaining on the piston appears to be under-predicted. High-speed video footage shows a vigorous spray impingement on the piston crown, resulting in vapor production.
X