Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Assessment of Several THOR Thoracic Injury Criteria based on a New Post Mortem Human Subject Test Series and Recommendations

2020-03-31
2019-22-0012
Several studies, available in the literature, were conducted to establish the most relevant criterion for predicting the thoracic injury risk on the THOR dummy. The criteria, such as the maximum deflection or a combination of parameters including the difference between the chest right and left deflections, were all developed based on given samples of Post Mortem Human Subject (PMHS). However, they were not validated against independent data and they are not always consistent with the observations from field data analysis. For this reason, 8 additional PMHS and matching THOR tests were carried out to assess the ability of the criteria to predict risks. Accident investigations showed that a reduction of the belt loads reduces the risk of rib fractures. Two configurations with different levels of force limitation were therefore chosen. A configuration representing an average European vehicle was chosen as a reference.
Technical Paper

Finite Element Simulation Study of a Frontal Driver Airbag Deployment for Out-Of-Position Situations

2003-10-27
2003-22-0011
As more and more active restraint devices are added by vehicle manufacturers for occupant protection, the history of driver frontal airbags illustrates that the design performance of such devices for in-position (IP) occupants often have to be limited in order to reduce their aggressiveness for out-of-position (OOP) situations. As of today, a limited number of publications dealing with FE simulation of airbag deployment for OOP are available. The objective of our study was to evaluate the feasibility of airbag deployment simulations based on an extensive set of well-defined physical test matrix. A driver frontal airbag was chosen (European mid-size car sample) for this study. It was deployed against a force plate (14 tests in a total of 6 configurations), and used with Hybrid III 50th percentile dummy (HIII) in OOP tests (6 tests, 4 configurations). Special attention was paid to control the boundary conditions used in experiments in order to improve the modelling process.
Technical Paper

The Effects of Small Seat Swiveling Angles on Occupant Responses during a Frontal Impact

2020-04-14
2020-01-0571
In highly automated vehicles (HAVs), new seat configurations may be desirable to allow occupants to perform new activities. One of the current HAV concepts is the swiveled seat layout, which might facilitate communication between occupants. The main objective of this study was to investigate the effects of seat swiveling angles on occupant kinematics and injury risk predicted by a Human Body Model (HBM) during a frontal impact. A detailed 50th percentile male HBM (GHBMC M50-O) was subjected to two frontal crash pulses in a sled setup. The model was positioned on a semi-rigid seat and restrained using a pre-inflated airbag and a three-point seatbelt. Simulations included four seat swiveling angles (0, -10, -20, and -30 degrees), three occupant positions (Sedan driver, large VAN driver or Laptop user), two airbag initial locations (nominal or matching the head Y location), and the inclusion of lateral supports on the seat pan.
Technical Paper

Thoracic Injury Investigation using PMHS in Frontal Airbag Out-of-Position Situations

2005-11-09
2005-22-0015
Many studies have reported multiple rib fractures sustained by an Out-of-Position (OOP) driver subjected to a frontal airbag deployment, but the injury mechanisms and thresholds remain unclear. Two successive phases occur during the bag deployment: punch-out loading of the thorax, followed by a membrane effect (Horsch et al. 1990). The aim of this study was to investigate the thoracic injuries generated by each phase separately. Tests of nine post-mortem human surrogates (PMHS) were carried out on a static test bench using a driver side airbag module described by Petit et al. (2003). The steering wheel was replaced by a plate in order to increase the loading generated by the airbag. Three loading configurations were performed: membrane only, punch-out only, and both types combined. The membrane-only tests were performed with the thorax initially positioned at 13, 78 and 128 mm from the plate in order to vary the load magnitude.
X