Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

A Joint Work to Develop a Predictive 1D Modelling Approach for Heavy Duty Gaseous Fueled Engines through Experiments and 3D CFD Simulations

2023-08-28
2023-24-0007
The present paper reports experimental and numerical research activities devoted to deeply characterize the behavior and performance of a Heavy Duty (HD) internal combustion engine fed by compressed natural gas (CNG). Current research interest in HD engines fed by gaseous fuels with low C/H ratios is related to the well-known potential of such fuels in reducing carbon dioxide emissions, combined to extremely low particulate matter emissions too. Moreover, methane, the main CNG component, can be produced through alternative processes relying on renewable sources, or in the next future replaced by methane/H2 blends. The final goal of the presented investigations is the development of a predictive 0D combustion submodel within the framework of a 1D numerical simulation platform.
Technical Paper

Comparison of the Performance and Operation Limits of an S.I. Engine Fueled with Neat Ammonia and Hydrogen-Ammonia Blends

2023-08-28
2023-24-0042
Nowadays, the interest in carbon free fuels for internal combustion engines has increased due to the high levels of CO2 in the atmosphere. In particular, ammonia can be used either as a neat fuel, either as an energy carrier for hydrogen production. Adding hydrogen to ammonia is important in order to improve the combustion characteristics of this fuel, like the laminar flame speed. In this paper, the authors investigated the operation limits of a light duty spark ignition engine fueled by neat ammonia and by an ammonia-hydrogen blend (85% of ammonia by volume). The whole maps of the engine powered by the considered fuel mixtures have been obtained by means of 1-D simulations taking into account several operating constraints. The addition of hydrogen to ammonia extends the exploitable region of the engine. In particular, if the engine is powered by neat ammonia, the maximum reachable engine speed is 3000 rpm, while considering the blend, it can be extended up to 5000 rpm.
Technical Paper

Direct Water Injection Strategies for Performance Improvement of a Turbocharged Spark-Ignition Engine at High Load Operation

2022-06-14
2022-37-0007
Water injection (WI) could be a viable tool for the reduction of CO2 emissions of spark-ignition engines. At high loads, the performances of this kind of engines are constrained by knock phenomena, thermal limits of engine components and maximum tolerable in-cylinder pressure. Water injection, mainly due to its cooling effect, helps mitigating knock and reducing the exhaust gas temperature. Furthermore, it allows to obtain greater spark advances, better combustion phasing and leaner mixtures with a consequent improvement in terms of engine efficiency. In this work, the authors investigated the effects of a particular direct water injection (DWI) strategy on the performance of a turbocharged PFI spark-ignition engine at high load operation. The analysis has been carried out using a validated 1D model that reproduces the entire engine layout. A knock model allows to identify the knock-limited parameters in the various operating points analyzed.
Technical Paper

Ethanol in a Light-Duty Dual Fuel Compression Ignition Engine: 3-D Analysis of the Combustion Process

2021-09-05
2021-24-0036
A wider use of biofuels in internal combustion engines could reduce the emissions of pollutants and greenhouse gases from the transport sector. In particular, due to stringent emission regulatory programs, compression ignition engine requires interventions aimed at reducing their polluting emissions. Ethanol, a low carbon fuel generally produced from biomass, is a promising alternative fuel applicable in compression ignition engines to reduce CO2 and soot emissions. In this paper, the application of a dual fuel diesel-ethanol configuration in a light-duty compression ignition engine has been numerically investigated. Ethanol is injected into the intake port, while diesel fuel is directly injected into the combustion chamber of the analyzed engine. CFD simulations have been carried out by means of the AVL Fire 3-D code. The operation at given engine load and speed has been simulated considering different diesel injection timings.
Technical Paper

Experimental and Numerical Analyses for the Characterization of the Cyclic Dispersion and Knock Occurrence in a Small-Size SI Engine

2010-09-28
2010-32-0069
In this paper, an experimental and numerical analysis of combustion process and knock occurrence in a small displacement spark-ignition engine is presented. A wide experimental campaign is preliminarily carried out in order to fully characterize the engine behavior in different operating conditions. In particular, the acquisition of a large number of consecutive pressure cycle is realized to analyze the Cyclic Variability (CV) effects in terms of Indicated Mean Effective Pressure (IMEP) Coefficient of Variation (CoV). The spark advance is also changed up to incipient knocking conditions, basing on a proper definition of a knock index. The latter is estimated through the decomposition and the FFT analysis of the instantaneous pressure cycles. Contemporary, a quasi-dimensional combustion and knock model, included within a whole engine one-dimensional (1D) modeling framework, are developed. Combustion and knock models are extended to include the CV effects, too.
Technical Paper

Experimental and Numerical Analyses of Direct and Port Water Injection in a Turbocharged Spark-Ignition Engine

2021-09-05
2021-24-0035
Water injection represents a promising tool to improve performance of spark-ignition engines. It allows reducing in-cylinder temperature, preventing knock risks. Optimizing the spark advance, water injection allows obtaining an increase of both efficiency and power output, particularly at medium and high loads. Water can be injected into the intake port or directly into the combustion chamber. In this paper, the authors investigated the effects of both direct and port water injection in a downsized PFI spark-ignition engine at high load operation. Different water-to-fuel ratios have been analyzed for both configurations. For the experimental analysis, low-pressure water injectors have been installed in the intake ports of the engine under study, upstream of the fuel injectors. Experimental tests have been carried out at various operating points. Furthermore, engine operation with port water injection has been simulated by means of the AVL Fire 3-D code.
Technical Paper

Knock Resistance in a Small Turbocharged Spark-Ignition Engine

2006-09-14
2006-01-2995
Spark-ignition engines are characterized by poor levels of thermal efficiency, it is known, especially when running at partial load. Since part-load operating points are the most commonly used in engine average life, achieving a given torque value with small displacement, high mean effective pressure engines, the so-called “downsizing”, permits, in general, to limit some typical engine losses (for instance: pumping and friction losses), improving the fuel consumption in a wide range of engine operating points. Small displacement engines, usually, achieve high toque values thanks to supercharging techniques. In this paper, knock risks for a small displacement turbo-charged spark-ignition engine have been analyzed. A parametric analysis of numerous variable influencing engine performance and knock resistance has been carried out by means of 1-D numerical simulations.
Technical Paper

Numerical Analysis of a Spark-Ignition Engine Fueled by Ethanol-Gasoline and Butanol-Gasoline Blends: Setting the Optimum Spark Advance

2017-09-04
2017-24-0117
In this paper, the behavior of a downsized spark-ignition engine firing with alcohol/gasoline blends has been analyzed. In particular, different butanol-gasoline and ethanol-gasoline blends have been examined. All the alcohol fuels here considered are derived from biomasses. In the paper, a numerical approach has been followed. A one dimensional model has been tuned in order to simulate the engine operation when it is fueled by alcohol/gasoline mixtures. Numerous operating points, characterized by two different engine speeds and several low-medium load values, have been analyzed. The objective of the numerical analysis is determining the optimum spark advance for different alcohol percentages in the mixtures at the different engine operating points. Once the best spark timing has been selected, the differences, in terms of both indicated torque and efficiency, arising in the different kinds of fueling have been evaluated.
X