Refine Your Search

Topic

Search Results

Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
Technical Paper

A Fuzzy Decision-Making System for Automotive Application

1998-02-23
980519
Fault diagnosis for automotive systems is driven by government regulations, vehicle repairability, and customer satisfaction. Several methods have been developed to detect and isolate faults in automotive systems, subsystems and components with special emphasis on those faults that affect the exhaust gas emission levels. Limit checks, model-based, and knowledge-based methods are applied for diagnosing malfunctions in emission control systems. Incipient and partial faults may be hard to detect when using a detection scheme that implements any of the previously mentioned methods individually; the integration of model-based and knowledge-based diagnostic methods may provide a more robust approach. In the present paper, use is made of fuzzy residual evaluation and of a fuzzy expert system to improve the performance of a fault detection method based on a mathematical model of the engine.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

An Electric Traction Platform for Military Vehicles

2004-03-08
2004-01-1583
This paper shall present the design and development of a family of high power, high-speed transport and combat vehicles based on a common module. The system looks to maximize performance at both high-speed operation and low-speed, heavy/severe-duty operation. All-wheel drive/steer-by-wire autonomous traction modules provide the basis for the vehicle family. Each module can continuously develop 300-400 kW of power at the wheels and has nearly double peak capability, exploiting the flexibility of the electric traction system. The maximum starting tractive effort developed by one module can reach 10-15 tons, and the full rated power can be produced at speeds of 100 mph. This paper will present the design and layout of the autonomous modules. Details will be provided about the tandem electric axles, with electric differentials and independent steering.
Journal Article

An Iterative Markov Chain Approach for Generating Vehicle Driving Cycles

2011-04-12
2011-01-0880
For simulation and analysis of vehicles there is a need to have a means of generating drive cycles which have properties similar to real world driving. A method is presented which uses measured vehicle speed from a number of vehicles to generate a Markov chain model. This Markov chain model is capable of generating drive cycles which match the statistics of the original data set. This Markov model is then used in an iterative fashion to generate drive cycles which match constraints imposed by the user. These constraints could include factors such number of stops, total distance, average speed, or maximum speed. In this paper, systematic analysis was done for a PHEV fleet which consists of 9 PHEVs that were instrumented using data loggers for a period of approximately two years. Statistical analysis using principal component analysis and a clustering approach was carried out for the real world velocity profiles.
Technical Paper

Analysis of Automotive Damper Data and Design of a Portable Measurement System

2005-04-11
2005-01-1043
This paper reviews existing approaches to the estimation of the state of wear of an automotive damper, with the aim of developing a methodology for a quick and effective diagnostic procedure that could be carried out in any repair facility. It has always been desirable to leave the shock absorber in place at the time of such testing, and there are three general procedures that claim to be effective at determining damper wear. This research investigates a method of controlling a short drop of each corner of the vehicle while measuring the acceleration. The acceleration data is then analyzed with the aim of estimating the decay rate of the resulting oscillation, which is known to be related to the damping ratio of the suspension system. The rate of decay is then used to infer the condition of the vehicles damper. The paper reviews the state of the art, describes the methodology and presents experimental validation of a new concept.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

Data-Driven Estimation of Coastdown Road Load

2024-04-09
2024-01-2276
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer.
Technical Paper

Design Optimization of Heavy Vehicles by Dynamic Simulations

2002-11-18
2002-01-3061
Building and testing of physical prototypes for optimization purposes consume significant amount of time, manpower and financial resources. Mathematical formulation and solution of vehicle multibody dynamics equations are also not feasible because of the massive size of the problem. This paper proposes a methodology for vehicle design optimization that does not involve physical prototyping or exhaustive mathematics. The proposed method is fast, cost effective and saves considerable manpower. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) and a flexible architecture to explore large design spaces.
Technical Paper

Detection of Partial Misfire in IC Engines Using a Measurement of Crankshaft Angular Velocity

1995-02-01
951070
In recent years considerable interest has been placed on the detection of engine misfire. As part of the California Air Resources Board on-board diagnostics regulations for 1994 model year vehicles, misfire should be monitored continuously by the engine diagnostic system. It is expected that the next generation of on-board diagnostics regulations will demand monitoring of partial misfire as well. Several solutions to the misfire detection problem have been proposed and demonstrated for the detection of complete misfires. However, the performance of these methods in the presence of partial misfire is not altogether clear. The aim of this paper is to evaluate the performance of various misfire detection indices, all based on a measurement of crankshaft angular velocity, in the presence of partial misfire. The proposed algorithms are compared to a standard based on a measurement of indicated pressure.
Technical Paper

Development and Application of Military Wheeled Vehicle Driving Cycle Generator

2005-11-01
2005-01-3560
A methodology has been developed to generate military vehicle driving cycles for use in vehicle simulation models. This methodology is based upon the mission profile for a vehicle, which is typically given within a vehicle's specifications and lists the types of terrains that the vehicle is likely to encounter. A simplistic vehicle powertrain and road load model and the Bekker vehicle-soil interaction model are used to estimate the vehicle performance over each type of terrain. Two types of driving cycles are generated within a Graphical User Interface developed within MATLAB using the results of the vehicle models: Linear modes driving cycles, and Real-world driving cycles.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
Technical Paper

Empirical Models for Commercial Vehicle Brake Torque from Experimental Data

2003-03-03
2003-01-1325
This paper introduces a new series of empirical mathematical models developed to characterize brake torque generation of pneumatically actuated Class-8 vehicle brakes. The brake torque models, presented as functions of brake chamber pressure and application speed, accurately simulate steer axle, drive axle, and trailer tandem brakes, as well as air disc brakes (ADB). The contemporary data that support this research were collected using an industry standard inertia-type brake dynamometer, routinely used for verification of FMVSS 121 commercial vehicle brake standards.
Technical Paper

Estimate of IC Engine Torque from Measurement of Crankshaft Angular Position

1993-09-01
932410
Crankshaft angular position measurements are fundamental to all modern automotive engines. These measurements are required to control fuel injection timing as well as ignition timing. However, many other functions can be performed from such measurements through the use of advanced signal processing. These additional functions are essentially diagnostic in nature although there is potential for substitution of primary fuel and ignition control functions. This paper illustrates the application of crankshaft angular position measurement to the estimation of individual cylinder indicated and/or brake torque in IC engines from measurement of crankshaft position/velocity.
Technical Paper

Failure Detection Algorithms Applied to Control System Design for Improved Diagnostics and Reliability

1988-02-01
880726
This paper presents the application of detection filters to the diagnosis of sensor and actuator failures in automotive control systems. The detection filter is the embodiment of a model-based failure detection and isolation (FDI) methodology, which utilizes analytical redundancy within a dynamical system (e.g., engine/controller) to isolate the cause and location of abnormal behavior (i.e., failures). The FDI methodology has been used, among other applications, in the aerospace industry for fault diagnosis of inertial navigation systems and flight controllers. This paper presents the philosophy and essential features of FDI theory, and describes the practical application of the method to the diagnosis of faults in the throttle position sensor in an electronically controlled IC engine. The paper also discusses the incorporation of FDI systems in the design process of a control strategy, with the aim of increasing reliability by embedding diagnostic features within the control strategy.
Technical Paper

Fault Diagnosis Of Steering System For Advanced Vehicle Control Systems

1998-02-23
980604
The viability of many new technologies for improving the drivability and safety of a vehicle has improved with the availability of advanced software and hardware tools. On-line diagnosis of steering system faults is one such area on which a lot of attention has been focused. When used in a manually driven automobile this technology can improve the safety of the vehicle by providing the driver with the fault information. While when used with a computer controlled steering (as envisaged in many of the IVHS technologies) it is of even greater importance, because electronic fault information is crucial to the proper functioning of many such systems. This paper deals with the design of a linear unknown input observer (UIO) based residual generator for steering system diagnosis. The observer was designed based on an accepted model of the automatic car steering problem. The observer was validated through experiments conducted on the OSU-autonomous vehicle.
Technical Paper

High Performance Fuel Cell Sedan

2004-03-08
2004-01-1003
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Some recent conceptual designs, such as GM's Hy-wire, have recognized this and offered innovative new architectures. Unfortunately, many other new technology concept cars do not exploit the freedoms of the new technologies, hampering themselves with traditional design cues developed for conventional powertrains. This paper will present the conceptual design of a high-power, high-speed fuel cell luxury sedan. One of the main motivations of this case study was to explore what could happen when a vehicle was designed from the ground up as a fuel cell vehicle, optimized at the overall system level as well as at the individual component level. The paper will discuss innovations in vehicle architecture and novel concepts for the electrical transmission, fuel cell system and electromagnetic suspension.
Technical Paper

High-power High-speed Road Train System

2003-11-10
2003-01-3380
This paper presents the design and development of a high-power, high-speed “road train” (with both on- and off-road applications). The system looks to optimize both high-speed operation and low-speed, close-quarters driving with the introduction of autonomous power modules. Each trailer in the road train has it own electric traction system. When driving on open roads or in open areas, each traction system receives electric energy from the high-powered tractor. However, the individual traction systems allow for distributed tractive effort, improving upon the classic road train. Further, each module has its own independent steering system, allowing for practical implementation of longer trains. Use of longer trains in open areas allows for reduced operational costs, and increased efficiency. When mobility becomes a primary concern or zero emissions operation is needed, small power supplies can allow independent trailer operation.
Technical Paper

IC Engine Fuel System Diagnostics Using Observer with Binary Sensor Measurement

1997-02-24
970031
In this paper, we propose an IC engine fuel system diagnostic algorithm based on a discrete-event nonlinear observer using the production oxygen sensor. A mean value engine model is used to describe the engine dynamics. A procedure for designing the discrete event based observer is presented and applied to estimate important engine variables using the measured binary oxygen sensor output. The estimated variables are then used to perform diagnostics of the fuel system of the IC engine. Experimental results on a multi-cylinder production engine are presented to demonstrate the effectiveness of the proposed method.
X