Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Technical Paper

A Multibody Model for Riderless Bicycle Dynamics Considering Tire Characteristics

2023-04-11
2023-01-0783
A multibody model for riderless bicycle dynamics considering tire characteristics is presented. A riderless bicycle is regarded as a multibody system consisting of four rigid bodies: rear wheel, frame, front fork, and front wheel. Every two bodies are connected with a revolute joint. The mass center coordinates and Euler angles of the rigid bodies are used as the generalized coordinates to describe their positions and orientations. The system equations of motion are obtained using Lagrange equations of the first kind. Due to the existence of the three revolute constraints and the use of dependent generalized coordinates, the Lagrange multipliers are employed to account for revolute reaction forces. As for the contact between the wheel and the ground, many studies regarded the wheel as a rigid body with a knife edge, which lead to the nonholonomic constraints between the wheel and the ground.
Technical Paper

A Novel Torque Distribution Approach of Four-Wheel Independent-Drive Electric Vehicles for Improving Handling and Energy Efficiency

2024-04-09
2024-01-2315
This paper presents a torque distribution strategy for four-wheel independent drive electric vehicles (4WIDEVs) to achieve both handling stability and energy efficiency. The strategy is based on the dynamic adjustment of two optimization objectives. Firstly, a 2DOF vehicle model is employed to define the stability control objective for Direct Yaw moment Control (DYC). The upper-layer controller, designed using Linear Quadratic Regulator (LQR), is responsible for tracking the target yaw rate and target sideslip angle. Secondly, the lower-layer torque distribution strategy is established by optimizing the tire load rate and motor energy consumption for dynamic adjustment. To regulate the weights of the optimization targets, stability and energy efficiency allocation coefficient is introduced. Simulation results of double lane change and split μ road conditions are used to demonstrate the effectiveness of the proposed DYC controller.
Technical Paper

A Path Tracking Method for an Unmanned Bicycle Based on the Body-Fixed Coordinate Frame

2024-04-09
2024-01-2303
The present study introduces a novel approach for achieving path tracking of an unmanned bicycle in its local body-fixed coordinate frame. A bicycle is generally recognized as a multibody system consisting of four distinct rigid bodies, namely the front wheel, the front fork, the body frame, and the rear wheel. In contrast to most previous studies, the relationship between a tire and the road is now considered in terms of tire forces rather than nonholonomic constraints. The body frame has six degrees of freedom, while the rear wheel and front fork each have one degree of freedom relative to the body frame. The front wheel exhibits a single degree of freedom relative to the front fork. A bicycle has a total of nine degrees of freedom.
Technical Paper

A Polynomial Chaos- Based Likelihood Approach for Parameter Estimation of Load Sensing Proportional Valve

2013-04-08
2013-01-0948
As there are a variety of uncertainty contained in dynamic systems, this paper presents a method to identify the uncertain parameters of Load Sensing Proportional Valve in a heavy truck brake system. This method is derived from polynomial chaos theory and uses the maximum likelihood approach to estimate the most likely value of uncertain parameters, such as equivalent bearing area diameter of the diaphragm, preload of return spring and so on. The maximum likelihood estimates are obtained through minimizing the cost function derived from the prior probability for the measurement noise. Direct stochastic collocation has been shown to be more efficient than Galerkin approach in the simulation of systems with large number of uncertain parameters. The simulation model of Load Sensing Proportional Valve is built in software AMESim based on logic structure of the valve. The uncertain parameters are estimated through the simulation results which are treated as measurements.
Journal Article

A Polynomial Chaos-Based Method for Recursive Maximum Likelihood Parameter Estimation of Load Sensing Proportional Valve

2014-04-01
2014-01-0721
In this paper, a new computational method is provided to identify the uncertain parameters of Load Sensing Proportional Valve (LSPV) in a heavy truck brake system by using the polynomial chaos theory. The simulation model of LSPV is built in the software AMESim depending on structure of the valve, and the estimation process is implemented relying on the experimental measurements by pneumatic bench test. With the polynomial chaos expansion carried out by collocation method, the output observation function of the nonlinear pneumatic model can be transformed into a linear and time-invariant form, and the general recursive functions based on Newton method can therefore be reformulated to fit for the computer programming and calculation. To improve the estimation accuracy, the Newton method is modified with reference to Simulated Annealing algorithm by introducing the Metropolis Principle to control the fluctuation during the estimation process and escape from the local minima.
Technical Paper

An Active Suspension Control Strategy for Planet Rover on Rough Terrain

2024-04-09
2024-01-2300
The soft and rough terrain on the planet's surface significantly affects the ride and safety of rovers during high-speed driving, which imposes high requirements for the control of the suspension system of planet rovers. To ensure good ride comfort of the planet rover during operation in the low-gravity environment of the planet's surface, this study develops an active suspension control strategy for torsion spring and torsional damper suspension systems for planet rovers. Firstly, an equivalent dynamic model of the suspension system is derived. Based on fractal principles, a road model of planetary surface is established. Then, a fuzzy-PID based control strategy aimed at improving ride comfort for the planet rover suspension is established and validated on both flat and rough terrains.
Technical Paper

An Improved AEB Control System Based on Risk Factors with Consideration of Vehicle Stability

2024-04-09
2024-01-2331
Intelligent vehicle-to-everything connectivity is an important development trend in the automotive industry. Among various active safety systems, Autonomous Emergency Braking (AEB) has garnered widespread attention due to its outstanding performance in reducing traffic accidents. AEB effectively avoids or mitigates vehicle collisions through automatic braking, making it a crucial technology in autonomous driving. However, the majority of current AEB safety models exhibit limitations in braking modes and fail to fully consider the overall vehicle stability during braking. To address these issues, this paper proposes an improved AEB control system based on a risk factor (AERF). The upper-level controller introduces the risk factor (RF) and proposes a multi-stage warning/braking control strategy based on preceding vehicle dynamic characteristics, while also calculating the desired acceleration.
Technical Paper

Cooperative Game Approach to Merging Sequence and Optimal Trajectory Planning of Connected and Automated Vehicles at Unsignalized Intersections

2022-03-29
2022-01-0295
Connected and automated vehicles (CAVs) can improve traffic efficiency and reduce fuel consumption. This paper proposes a cooperative game approach to merging sequence and optimal trajectory planning of CAVs at unsignalized intersections. The trajectory of the vehicles in the control zone is optimized by the Pontryagin minimum principle. The vehicle's travel time, fuel consumption, and passenger comfort are considered to construct the joint cost function, completing the optimal trajectory planning to minimize the joint cost function. Analyzing the different states between neighboring CAVs at the intersection to calculate the minimum safety interval. The cooperative game approach to merging sequence aims to minimize the global cost and the merging sequence of CAVs is dynamically adjusted according to the gaming result. The multi-player games are decomposed into two-player games, to realize the goal of the minimal global cost and improve the calculation efficiency.
Technical Paper

Coupled Longitudinal and Lateral Control for Trajectory Tracking of Autonomous Vehicle Based on LTV-MPC Approach

2022-03-29
2022-01-0296
Trajectory and velocity tracking are currently one of the core issues in autonomous vehicle control. However, most studies deal with them separately which may cause vehicle instability under extreme conditions. In this paper, a coupled longitudinal and lateral control strategy of trajectory tracking for autonomous vehicles is presented. A lateral controller is implemented with a Linear Time-Varying MPC (LTV-MPC) to generate the front steering angle required for trajectory tracking. The side-slip angle is constrained within an interval to prevent tire saturation. Furthermore, a velocity regulation module in which the reference velocity is calculated considering the curvature of the trajectory and the lateral stability criteria is designed. A longitudinal controller is proposed to provide the traction torque with the obtained reference velocity to cope with the longitudinal velocity tracking problem.
Technical Paper

Gap Adjustment Strategy for Electromechanical Brake System Based on Critical Point Identification

2024-04-09
2024-01-2320
Abrasion of the Electromechanical brake (EMB) brake pad during the braking process leads to an increase in brake gap, which adversely affects braking performance. Therefore, it is imperative to promptly detect brake pad abrasion and adjust the brake gap accordingly. However, the addition of extra gap adjustment or sensor detection devices will bring extra size and cost to the brake system. In this study, we propose an innovative EMB gap active adjustment strategy by employing modeling and analysis of the braking process. This strategy involves identifying the contact and separation points of the braking process based on the differential current signal. Theoretical analysis and simulation results demonstrate that this gap adjustment strategy can effectively regulate the brake gap, mitigate the adverse effects of brake disk abrasion, and notably reduce the response time of the braking force output. Monitoring is critical to accurately control EMB clamping force.
Journal Article

Modeling, Experimentation and Sensitivity Analysis of a Pneumatic Brake System in Commercial Vehicles

2014-04-01
2014-01-0295
The main purpose of this research is to investigate the optimal design of pipeline diameter in an air brake system in order to reduce the response time for driving safety using DOE (Design of Experiment) method. To achieve this purpose, this paper presents the development and validation of a computer-aided analytical dynamic model of a pneumatic brake system in commercial vehicles. The brake system includes the subsystems for brake pedal, treadle valve, quick release valve, load sensing proportional valve and brake chamber, and the simulation models for individual components of the brake system are established within the multi-domain physical modeling software- AMESim based on the logic structure. An experimental test bench was set up by connecting each component with the nylon pipelines based on the actual layout of the 4×2 commercial vehicle air brake system.
Technical Paper

Neural-Network-Based Suspension Kinematics and Compliance Characteristics and Its Implementation in Full Vehicle Dynamics Model

2022-03-29
2022-01-0287
Suspension kinematics and compliance strongly influence the handling performance of the vehicle. The kinematics and compliance characteristics are determined by the suspension geometry and stiffness of suspension bodies and elastic components. However, it is usually inefficient to model all the joints, bushings, and linkage deformation in a full vehicle model. By transforming the complex modeling problem into a data-driven problem tends to be a good solution. In this research, the neural-network-based suspension kinematics and compliance model is built and implemented into a 17 DOF full vehicle model, which is a hybrid model with state variables expressed in the global coordinate system and vehicle coordinate system. The original kinematics and compliance characteristics are derived from multibody dynamics simulation of the suspension system level.
Technical Paper

On-Board Estimation of Road Adhesion Coefficient Based on ANFIS and UKF

2022-03-29
2022-01-0297
The road adhesion coefficient has a great impact on the performance of vehicle tires, which in turn affects vehicle safety and stability. A low coefficient of adhesion can significantly reduce the tire's traction limit. Therefore, the measurement of the coefficient is much helpful for automated vehicle control and stability control. Considering that the road adhesion coefficient is an inherent parameter of the road and it cannot be known directly from the information of the on-vehicle sensors. The novelty of this paper is to construct a road adhesion coefficient observer which considers the noise of sensors and measures the unknown state variable by the trained neural network. A Butterworth filter and Adaptive Neural Fuzzy Interference System (ANFIS) are combined to provide the lateral and longitudinal velocity which cannot be measured by regular sensors.
Journal Article

Road-Feeling Simulation of SBW System Based on Kalman Filter Fusion Estimation

2023-04-11
2023-01-0779
Due to the elimination of the mechanical connection between the steering column and steering gear in the Steer-by-Wire (SBW) system, the road-feeling simulation is mainly supplied by the road-feeling motor which loads a drag torque on the steering wheel rather than the actual torque transmitted from the road. To obtain more realistic steering wheel torque, a novel feedback torque of the road-feeling motor fusion estimation method based on the Kalman filter is presented in this paper. Firstly, the model-based estimation method is utilized to estimate the aligning torque between tires and ground which is converted into the rack force through the steering system. Then the estimated rack force is used as the observed data for the Kalman Filter of the sensor-based method and the Kalman Filter-based fusion estimation method is resulted, through which the more realistic feedback torque of the road-feeling motor can be obtained.
Technical Paper

Robust Design Optimization of an Shock Absorber for Enhancing Ride Performance

2013-04-08
2013-01-0995
There are many uncertain parameters in shock absorbers, which are induced by the manufacturing error, the wear of components and the aging of materials in real vehicle environment. These uncertainties often cause some deterioration of vehicle performance. To optimize the ride characteristic of a vehicle when the shock absorber includes uncertain parameters, the robust design method is used. In this paper, a Twin Tube shock absorber fluid system model has established on the multi-domain modeling environment. This model not only includes the commonly used parameters of the shock absorber but also takes into account the structure parameters of various valves in the shock absorber, which is more detailed and accurate than those models in the past literature. The robust design of the shock absorber parameters is successfully approached using the co-simulation technique, and the ride comfort performance of the vehicle is also improved.
Journal Article

Robust Design of a Pneumatic Brake System in Commercial Vehicles

2009-04-20
2009-01-0408
The air brake system has been widely used since its great superiority over many other kinds of brake systems, but the capacity and the stability of air brake system are determined by many factors which are always uncertain and difficult to be evaluated accurately. So it is necessary to improve the robustness of this kind of brake system. In this paper, a physical model of air brake control system is made by a multi-domain physical modeling software-AMESim and the robust design for air brake system is carried out. Firstly, the key design parameters that will greatly affect on the delay time and pressure that leads to the shaking problem are obtained by using the method of design of experiment (DOE). Then, the regress of the response surface based on results of DOE and the robust design using the tolerance design are carried out. The value for those key parameters that can lead to the best performance and robustness of the air brake system are finally determined.
Technical Paper

Semi-Active Control of ISD In-Wheel Motors Suspension with Dynamic Vibration Absorber

2022-03-29
2022-01-0285
Electric vehicles driven by in-wheel-motor have the advantages of compact structure and high transmission efficiency, which is one of the most ideal energy-saving, environmentally friendly, and safe driving forms in the future. However, the addition of the in-wheel-motor significantly increases the unsprung mass of the vehicle, resulting in a decrease in the mass ratio of the vehicle body to the wheel, which will deteriorate the ride comfort and safety of the vehicle. To improve the vibration performance of in-wheel-motor driven vehicles, a semi-active inerter-spring-damper (ISD) suspension with in-wheel-motor (IWM) dynamic vibration absorber (DVA) of the electric wheel is proposed in this paper. Firstly, a structure of in-wheel-motor DVA is proposed, which converts the motor into a dynamic vibration absorber of the wheel to suppress the vibration of the unsprung mass.
Journal Article

Suspension Kinematic/Compliance Uncertain Optimization Using a Chebyshev Polynomial Approach

2015-04-14
2015-01-0432
The optimization of vehicle suspension kinematic/compliance characteristics is of significant importance in the chassis development. Practical suspension system contains many uncertainties which may result from poorly known or variable parameters or from uncertain inputs. However, in most suspension optimization processes these uncertainties are not accounted for. This study explores the use of Chebyshev polynomials to model complex nonlinear suspension systems with interval uncertainties. In the suspension model, several kinematic and compliance characteristics are considered as objectives to be optimized. Suspension bushing characteristics are considered as design variables as well as uncertain parameters. A high-order response surface model using the zeros of Chebyshev polynomials as sampling points is established to approximate the suspension kinematic/compliance model.
Technical Paper

Trajectory Planning of Autonomous Vehicles Based on Parameterized Control Optimization for Three-Degree-of-Freedom Vehicle Dynamics Model

2024-04-09
2024-01-2332
In contemporary trajectory planning research, it is common to rely on point-mass model for trajectory planning. However, this often leads to the generation of trajectories that do not adhere to the vehicle dynamics, thereby increasing the complexity of trajectory tracking control. This paper proposes a local trajectory planning algorithm that combines sampling and sequential quadratic optimization, considering the vehicle dynamics model. Initially, the vehicle trajectory is characterized by utilizing vehicle dynamic control variables, including the front wheel angle and the longitudinal speed. Next, a cluster of sampling points for the anticipated point corresponding to the current vehicle position is obtained through a sampling algorithm based on the vehicle's current state. Then, the trajectory planning problem between these two points is modeled as a sequential quadratic optimization problem.
X