Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

A Lagrangian Collision Model Applied to an Impinging Spray Nozzle

2006-10-16
2006-01-3331
This paper describes the implementation and evaluation of a collision model for CFD spray simulations. The collision model is intended to be used for prediction of fuel sprays from specially designed impinging spray nozzles. The new model is enhanced in terms of collision frequency, post-collisional characteristics and collision induced break-up. The model is evaluated in terms of macro scale properties, such as spray penetration and spray cone angle.
Technical Paper

Control of HCCI During Engine Transients by Aid of Variable Valve Timings Through the Use of Model Based Non-Linear Compensation

2005-04-11
2005-01-0131
One of the main challenges with the Homogeneous Charge Compression Ignition, HCCI, combustion system is to control the Start Of Combustion, SOC, for varying load and external conditions. A method to achieve this on a cycle-by-cycle basis is to vary the valve timing based on a feedback signal from the SOC of previous cycles. The control can be achieved with two basic valve-timing strategies named the Overlap- and the IVC-method. The Overlap-method works by trapping of residuals while the IVC-method affects the effective compression ratio. In an earlier paper it has been shown that if the two methods are incorporated into one controller, SOC can be controlled in a relatively large operating window although the transient performance was not sufficient. The reason is that the simple PI-controller cannot be made fast enough to cope with the transients without magnifying the cycle-to-cycle variations of the combustion into instability.
Technical Paper

Demonstration of Air-Fuel Ratio Role in One-Stage Turbocompound Diesel Engines

2013-10-14
2013-01-2703
A large portion of fuel energy is wasted through the exhaust of internal combustion engines. Turbocompound can, however, recover part of this wasted heat. The energy recovery depends on the turbine efficiency and mass flow as well as the exhaust gas state and properties such as pressure, temperature and specific heat capacity. The main parameter influencing the turbocompound energy recovery is the exhaust gas pressure which leads to higher pumping loss of the engine and consequently lower engine crankshaft power. Each air-fuel equivalence ratio (λ) gives different engine power, exhaust gas temperature and pressure. Decreasing λ toward 1 in a Diesel engine results in higher exhaust gas temperatures of the engine. λ can be varied by changing the intake air pressure or the amount of injected fuel which changes the available energy into the turbine. Thus, there is a compromise between gross engine power, created pumping power, recovered turbocompound power and consumed compressor power.
Technical Paper

Development of a Heavy Duty Nozzle Coking Test

2013-10-14
2013-01-2674
The diesel engine is still one of the most common and most efficient mobile energy converters. Nevertheless, it is troubled by many problems, one of them being nozzle coking. This is not a new problem; however, due to the introduction of more advanced injection systems and a more diverse fuel matrix, including biofuels, the problem has become more complex. The nozzle holes are also much narrower today than when the problem first appeared and are therefore more sensitive to coking. Two CEC sanctioned coking tests exist for diesel engines, but no universally accepted test for heavy duty engines. In this paper, tests have been performed with B10 doped with 1 ppm zinc on a single cylinder engine, based on a heavy duty engine, with the purpose to develop a simple accelerated coking test. To have relevance to real usage, the test was based on real engine load points from a high power Euro V engine calibration. The coking propensity was studied in an engine speed sweep at max load.
Technical Paper

Heat Losses from the Turbine of a Turbocharged SI-Engine - Measurements and Simulation

2004-03-08
2004-01-0996
Traditionally, heat losses from the turbine are neglected in turbomatching calculations as well as in engine simulations [1]. On the SI-engine, with it's high exhaust temperatures, this assumption will lead to errors in the calculations. Significant amounts of heat are dissipated from the turbine through several mechanisms. This paper contains measurements of the different heat loss mechanisms from the turbine during full load operation on a 4-cylinder SI-engine. The largest loss components are convective and radiative. The heat losses to cooling water and lubrication oil were approximately 3-5% of the total heat loss from the turbine. In addition to heat losses to the surroundings, heat flux is also present internally in the turbocharger. Heat flux from the turbine to the compressor can deteriorate the efficiency of the compressor.
Technical Paper

Integrated Simulation and Engine Test of Closed Loop HCCI Control by Aid of Variable Valve Timings

2003-03-03
2003-01-0748
Homogeneous Charge Compression Ignition, HCCI, has the attractive feature of low particulate and low NOx emission combined with high efficiency. The principle is a combination of an Otto and a Diesel engine in that a premixed charge is ignited by the compression heat. One of the main challenges with the HCCI combustion system is to control the combustion timing/phasing for varying load and external conditions. A method to achieve this on a cycle-by-cycle basis is to vary the valve timing based on a feedback signal from the combustion timing of previous cycles. A combined engine and control simulation is performed. The simulations are accomplished with a commercial cycle simulation code linked with a commercial control simulation code. The simulations are iteratively verified against engine test data. Engine tests are conducted on a single cylinder engine equipped with at hydraulic valve system that allows a high degree of freedom in choosing the valve timings.
Technical Paper

Nozzle Coking in CNG-Diesel Dual Fuel Engines

2014-10-13
2014-01-2700
Nozzle coking in diesel engines has received a lot of attention in recent years. High temperature in the nozzle tip is one of the key factors known to accelerate this process. In premixed CNG-diesel dual fuel, DDF, engines a large portion of the diesel fuel through the injector is removed compared to regular diesel operation. This can result in very high nozzle temperatures. Nozzle hole coking can therefore be expected to pose a significant challenge for DDF operation. In this paper an experimental study of nozzle coking has been performed on a DDF single cylinder engine. The objective was to investigate how the rate of injector nozzle hole coking during DDF operation compares to diesel operation. In addition to the nozzle tip temperature, the impact of other parameters on coking rate was also of interest. Start of injection, λ, diesel substitution ratio and common rail pressure were varied in two levels starting from a common baseline case, resulting in a total of 10 operating cases.
Journal Article

Performance Sensitivity to Exhaust Valves and Turbine Parameters on a Turbocompound Engine with Divided Exhaust Period

2014-10-13
2014-01-2597
Turbocompound can utilize part of the exhaust energy on internal combustion engines; however, it increases exhaust back pressure, and pumping loss. To avoid such drawbacks, divided exhaust period (DEP) technology is combined with the turbocompound engine. In the DEP concept the exhaust flow is divided between two different exhaust manifolds, blowdown and scavenging, with different valve timings. This leads to lower exhaust back pressure and improves engine performance. Combining turbocompound engine with DEP has been theoretically investigated previously and shown that this reduces the fuel consumption and there is a compromise between the turbine energy recovery and the pumping work in the engine optimization. However, the sensitivity of the engine performance has not been investigated for all relevant parameters.
Technical Paper

The Influence of EGR on Auto-ignition Quality of Gasoline-like Fuels in HCCI Engines

2004-10-25
2004-01-2952
In previous studies it has been shown that the auto-ignition quality of a fuel at a given engine condition can be described by an octane index defined as, OI=(1-K) RON + K MON, where RON and MON characterize the fuel and the K-value depends only on the engine design and operating conditions. It has been shown that the K-value is highly dependent on the pressure and temperature history. Another important parameter is OI0, the OI of the fuel which gives heat release centred at top dead center; OI0 can be considered to be the requirement of the engine. In previous work, empirical relations for both K and OI0 in terms of in-cylinder pressure and temperature and engine speed and mixture strength were found but the influence of EGR was not considered.
Journal Article

The Influence of In-Cylinder Flows on Emissions and Heat Transfer from Methane-Diesel Dual Fuel Combustion

2013-10-14
2013-01-2509
In order for premixed methane diesel dual fuel engines to meet current and future legislation, the emissions of unburned hydrocarbons must be reduced while high efficiency and high methane utilization is maintained. This paper presents an experimental investigation into the effects of in cylinder air motion, swirl and tumble, on the emissions, heat transfer and combustion characteristics of dual fuel combustion at different air excess ratios. Measurements have been carried out on a single cylinder engine equipped with a fully variable valve train, Lotus AVT. By applying different valve lift profiles for the intake valves, the swirl was varied between 0.5 and 6.5 at BDC and the tumble between 0.5 and 4 at BDC. A commercial 1D engine simulation tool was used to calculate swirl number and tumble for the different valve profiles. Input data for the simulation software was generated using a steady-state flow rig with honeycomb torque measurements.
Technical Paper

Transient Control of HCCI Combustion by aid of Variable Valve Timing Through the use of a Engine State Corrected CA50-Controller Combined with an In-Cylinder State Estimator Estimating Lambda

2005-05-11
2005-01-2128
One of the main challenges with the Homogeneous Charge Compression Ignition, HCCI, combustion system is to control the Start Of Combustion, SOC, for varying load and external conditions. A method to achieve this on a cycle-by-cycle basis is to vary the valve timing based on a feedback signal from the SOC of previous cycles. The control can be achieved with two basic valve-timing strategies named the Overlap- and the IVC-method. The Overlap-method works by trapping of residuals while the IVC-method affects the effective compression ratio. In an earlier paper it has been shown that if the two methods are incorporated into one controller, SOC can be controlled in a relatively large operating window although the transient performance was not sufficient. The reason is that a simple PI-controller cannot be made fast enough to cope with the transients without magnifying the cycle-to-cycle variations of the combustion into instability.
Technical Paper

Transient Control of HCCI Through Combined Intake and Exhaust Valve Actuation

2003-10-27
2003-01-3172
Homogeneous Charge Compression Ignition, HCCI, has the attractive feature of low particulate emission and low Nitrogen Oxides, NOx, emission combined with high efficiency. The principle is a combination of an Otto and a Diesel engine in that a premixed charge is ignited by the compression heat. One of the main challenges with the HCCI combustion system is to control the Start Of Combustion, SOC, for varying load and external conditions. A method to achieve this on a cycle-by-cycle basis is to vary the valve timing based on a feedback signal from the SOC of previous cycles. The control can be achieved with two basic valve-timing strategies, named the Overlap- and the IVC-method. The Overlap-method works by trapping of residuals while the IVC-method affects the effective compression ratio. These methods have in an earlier paper been verified to work one at a time to control SOC during engine transients [1].
X