Refine Your Search

Topic

Search Results

Journal Article

7-XDCT: Compact and Cost-Efficient Dual Clutch Transmission for Small and Mid-Size Vehicles

2013-04-08
2013-01-1271
The automotive industry continues to develop new powertrain technologies aimed at reducing overall vehicle level fuel consumption. The ongoing trends of “downsizing” and “down speeding” have led to the development of turbocharged engines with low displacement and high torque density. In order to meet the launch response requirements with these engines as well as fuel economy needs, transmissions with large ratio spreads will need to be developed. Due to the lack of torque amplification from the torque converter, the next generation of dual clutch transmissions (DCT) will need to have larger launch ratios and ratio spreads than currently available in production today. This paper discusses the development of a new family of DCT (called “xDCT”) for use in front wheel drive vehicles, aimed at meeting some of these challenges. The xDCT family features two innovative concepts, the idea of “gear generation” and “supported shifts”.
Technical Paper

Active Sound Design Methodologies for Hybrid and Electric Vehicles

2021-08-31
2021-01-1019
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of innovative drivetrain technologies including conventional and electrified propulsion systems is expected to play an increasingly important role in helping OEMs meet fleet CO2 reduction targets for 2025 and beyond. NVH development for vehicles with electrified powertrains introduces new challenges, which need to be understood and solved. The electrified vehicle space spans variants from micro and mild hybrids all the way through plug-in hybrids and fully electric vehicles. In addition to conventional NVH development methodologies, active sound design (ASD) can play a crucial role to enhance the interior sound perception of such vehicles and hence, improve customer acceptance of new technologies. This paper will begin with an introduction to the NVH challenges posed by electrified vehicles.
Technical Paper

Air Induction Impact on Turbocharger Noise and Thermodynamic Performance

2020-04-14
2020-01-0426
The trend to simultaneously improve fuel economy and engine performance has led to industry growth of turbocharged engines and as a result, the need to address their undesirable airborne noise attributes. This presents some unique engineering challenges as higher customer expectations for Noise Vibration Harshness (NVH), and other vehicle-level attributes increase over time. Turbocharged engines possess higher frequency noise content compared to naturally aspirated engines. Therefore, as an outcome, whoosh noise in the Air Induction System (AIS) during tip in conditions is an undesirable attribute that requires high frequency attenuation enablers. The traditional method for attenuation of this type of noise has been to use resonators which adds cost, weight and requires packaging space that is often at a premium in the under-hood environment.
Technical Paper

Application of Combustion Sound Level (CSL) Analysis for Powertrain

2009-05-19
2009-01-2168
Powertrain noise is a significant factor in determination of the overall vehicle refinement expected by today's discriminating automotive customer. Development of a powertrain to meet these expectations requires a thorough understanding of the contributing noise sources. Specifically, combustion noise greatly impacts the perception of sound levels and quality. The relevance of combustion noise development has increased with the advent of newer efficiency-driven technologies such as direct injection or homogeneous charge compression ignition. This paper discusses the application of a CSL (Combustion Sound Level) analysis-a method for the identification and optimization of combustion noise. Using CSL, it is possible to separate mechanical and combustion noise sources.
Technical Paper

Aspects of Driveline Integration for Optimized Vehicle NVH Characteristics

2007-05-15
2007-01-2246
Customer requirements for quiet and more comfortable vehicles have steadily increased. Requirements for lightweight vehicle designs and the need for more fuel efficient engines are often contradictory to the customer expectations for NVH refinement. The driveline can be a significant source of NVH issues in the vehicle. The increasing complexity of modern driveline systems as well as the existence of several variants in the driveline architecture (front wheel, rear wheel and four-wheel/all-wheel drive, automatic-, manual-, automatic-shifted manual transmission, etc.) can make the driveline integration task very challenging. Due to the multitude of driveline components and potential driveline excitations sources, several driveline-related noise and vibration problems within different frequency ranges have to be understood and controlled to ensure a well refined vehicle.
Technical Paper

Aspects of Powertrain Noise with Special Emphasis on Impulsive Noise

2007-05-15
2007-01-2411
NVH refinement is an important aspect of the powertrain development process. Powertrain NVH refinement is influenced by overall sound levels as well as sound quality. The sound quality and hence the level of powertrain NVH refinement can be negatively affected by the presence of excessive impulsive noise. This paper describes a process used to develop an understanding of impulsive powertrain noise. The paper begins with an introductory discussion of various sources of impulsive noise in an automotive powertrain. Following this, the paper outlines a process for identifying the source of the impulsive powertrain noise using examples from case studies. The remainder of the paper focuses on certain examples of impulsive noise such as Diesel knocking noise, injector ticking, impulsive cranktrain noise, and gear rattle. For these examples, the development of key objective metrics, optimization measures, and improvement potential are examined.
Technical Paper

Aspects of Shift Quality With Emphasis on Powertrain Integration and Vehicle Sensitivity

2005-05-16
2005-01-2303
A customer's perception of vehicle quality very closely parallels the noise vibration and harshness (NVH) characteristics of the vehicle. Consequently, automotive manufacturers are investing significant resources into optimizing the NVH performance of their vehicles. Automatic transmission shift quality is one of a number of attributes where NVH optimization is critical towards providing customers with a pleasant driving experience. This paper addresses various aspects of understanding, quantifying and optimizing a vehicle's shift quality characteristics. Following an introductory treatment of automatic transmission planetary gear systems, the interaction between the engine/transmission system during shifts is summarized. Various shift quality metrics used to quantify a vehicle's response and its sensitivity to transient inputs are provided. Approaches to manage the engine torque output during the shifts are discussed.
Technical Paper

Assessment of Automotive Environmental Noise on Mobile Phone Hands-Free Call Quality

2019-06-05
2019-01-1597
Environmental noises such as wind, road, powertrain, and HVAC noise are important aspects to consider when implementing a hands-free terminal for mobile phone calling from within a car. Traditionally, these environmental noises have been exclusively considered for driver comfort; however, with the introduction of the hands-free terminals (HFT) and increasing consumer demand relative to mobile phone call quality, a broader implication of high background noise levels should be considered. HFT algorithm development and implementation can and does provide a high level of background noise suppression to mitigate these concerns, but this is often done at the expense of computational power and cumulative delay during a phone call. The more advantageous solution would be to address the problem from a source and path perspective with emphasis on reduction of noise in the frequency bands which most influence call quality performance.
Technical Paper

Assessment of Lightweight Automotive Glass Solutions on Interior Noise Levels & Sound Quality

2017-06-05
2017-01-1814
The automotive industry continues to develop technologies for reducing vehicle fuel consumption. Specifically, vehicle lightweighting is expected to be a key enabler for achieving fleet CO2 reduction targets for 2025 and beyond. Hybrid glass laminates that incorporate fusion draw and ion exchange innovations are thinner and thereby, offer more than 30% weight reduction compared to conventional automotive laminates. These lightweight hybrid laminates provide additional benefits, including improved toughness and superior optics. However, glazing weight reduction leads to an increase in transmission of sound through the laminates for certain frequencies. This paper documents a study that uses a systematic test-based approach to understand the sensitivity of interior vehicle noise behavior to changes in acoustic attenuation driven by installation of lightweight glass.
Journal Article

Automobile Powertrain Sound Quality Development Using a Design for Six Sigma (DFSS) Approach

2015-06-15
2015-01-2336
Automotive companies are studying to add extra value in their vehicles by enhancing powertrain sound quality. The objective is to create a brand sound that is unique and preferred by their customers since quietness is not always the most desired characteristic, especially for high-performance products. This paper describes the process of developing a brand powertrain sound for a high-performance vehicle using the DFSS methodology. Initially the customer's preferred sound was identified and analyzed. This was achieved by subjective evaluations through voice-of-customer clinics using vehicles of similar specifications. Objective data were acquired during several driving conditions. In order for the design process to be effective, it is very important to understand the relationship between subjective results and physical quantities of sound. Several sound quality metrics were calculated during the data analysis process.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Cold Start Engine Clatter Noise Evaluations

2005-05-16
2005-01-2455
Internal combustion engine noise is primarily composed of combustion and mechanical noise shares. Mechanical noise contributions in engines have increased relevance at low load conditions when combustion related noise is not significant. Current literature on mechanical noise in engines includes: piston pin ticking, piston secondary motion, and valvetrain impacts. A mechanical noise source from excitation of piston tertiary motion is described here in the form of a case study on an engine exhibiting a cold start “clatter” noise. Targeted experimental measurements were initially used to rule out potential mechanisms such as impacts resulting from piston pin ticking and piston secondary motion. Experimental modification studies and piston load and kinematics modeling led to discovery of instability of the piston which is understood to excite tertiary motion of the piston and result in impulsive “clatter” noise under certain low load/speed conditions.
Technical Paper

Conditioned NExT Analysis, A Technique for Estimation of Modal Damping Ratios of Operating Piston Engines

1999-05-17
1999-01-1751
A new approach of estimating the modal parameters of operating piston engines is presented. The developed approach represents a combination of concepts from currently existing analyses such as the natural excitation technique (NExT), conditioned input analysis (CIA), and conditioned source analysis (CSA), and is hence termed “conditioned NExT analysis (CNA)”. NExT analysis can be employed to estimate modal parameters of structures in their naturally excited states. However, the existence of strong combustion induced periodic forcing makes the application of NExT analysis to operating engines difficult, if not impossible. CIA and CSA, built on concepts of partial and virtual coherence respectively, can effectively condition operating engine vibration data so as to remove any periodic energy associated with the process of combustion.
Technical Paper

Development of a Multi-Body Systems Approach for Analysis of Launch Shudder in Rear Wheel Driven Vehicles

2009-05-19
2009-01-2073
Driveline shudder is a low-frequency (10 Hz - 30 Hz) vibration issue of vehicles that can occur under various test conditions. Specifically, launch shudder is an issue that can be prevalent under vehicle take-off conditions. Factors that typically contribute to launch shudder include stick-slip excitation of friction materials (clutches) and driveline excitations, in particular, on rear wheel drive (RWD) vehicles. Shudder caused by the driveline excitation is generally related to the universal joints (Cardan joints) in the driveline system. In this case, the u-joint forces and kinematics induce a 2nd order excitation when operated under a driveline angle. This document focuses on launch shudder phenomena resulting from driveline system excitation on a RWD vehicle. An initial treatment of the physics governing launch shudder and typical factors influencing the shudder levels in vehicle are provided.
Technical Paper

Driveline Boom Interior Noise Prediction Based on Multi Body Simulation

2011-05-17
2011-01-1556
It is important to develop powertrain NVH characteristics with the goal of ultimately influencing/improving the in-vehicle NVH behavior since this is what matters to the end customer. One development tool called dB(VINS) based on a process called Vehicle Interior Noise Simulation (VINS) is used for determining interior vehicle noise based on powertrain level measurements (mount vibration and radiated noise) in combination with standardized vehicle transfer functions. Although this method is not intended to replace a complete transfer path analysis and does not take any vehicle specific sensitivity into account, it allows for powertrain-induced interior vehicle noise assessments without having an actual test vehicle available. Such a technique allows for vehicle centric powertrain NVH development right from an early vehicle development stage.
Technical Paper

Drivetrain Torsional and Bending Vibration for a RWD Vehicle Interior Noise Development

2003-05-05
2003-01-1496
In a vehicle NVH development and refinement phase, it is necessary to understand the source of the noise and vibration from various powertrain and drivetrain mechanisms. The noise and vibration generated by a drivetrain in a vehicle is a complicate but significant source of physical mechanism, which might become important issues in early or later phase of the vehicle development. For the diagnostic purpose of the drivetrain, a rear-wheel drive (RWD) vehicle in early development phase has been used to measure the bending and torsional vibration of the drivetrain, as well as the vehicle interior noise simultaneously, while the vehicle is running up and down under quasi-steady state on a chassis dynamometer. The lower frequency resonances of torsional and bending vibrations from the drivetrain are correlated with the vehicle interior boom or overall loudness.
Technical Paper

Evaluation of Source and Path Contributions to Sound Quality Using Vehicle Interior Noise Simulation

2011-05-17
2011-01-1685
It is commonly accepted that refined “powertrain sound quality” is essential to the development of a vehicle which will be well received by today's discriminating automotive customer. However, though there are several metrics which correlate well with a subjective impression of powertrain level inputs, what is ultimately important is the sound quality at driver's ear. Vehicle level powertrain sound quality is influenced by the powertrain noise and vibration (source) as well as the vehicle airborne and structureborne transfer functions (path). In development as well as benchmarking activities, it can be difficult to separate the influence of source and path on overall vehicle sound quality.
Technical Paper

Evaluations of Combustion Parameters Using Engine Speed Fluctuation Measurements

2005-05-16
2005-01-2533
The combustion process in an IC engine is of significant importance for its noise and vibration characteristics in the vehicle. Describing the combustion process with thermodynamic metrics typically demands extensive instrumentation of the engine to obtain the cylinder pressure from the combustion chamber. This time consuming task often requires, that the engine be removed from the vehicle, instrumented with pressure transducers, and then either reinstalled in the vehicle and tested or installed in a test cell and evaluated. This paper describes a new relatively simple approach towards examining important combustion parameters. The technique is based on statistical analysis of the crankshaft's speed fluctuation. This approach requires relatively simple instrumentation of the engine and is therefore more applicable for vehicle level investigations.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Journal Article

Impact of the Future Fuel Economy Targets on Powertrain, Driveline and Vehicle NVH Development

2017-06-05
2017-01-1777
The automotive industry continues to develop new technologies aimed at reducing overall vehicle level fuel consumption. Powertrain and driveline related technologies will play a key role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. Specifically, use of technologies such as downsized engines, idle start-stop systems, aggressive torque converter lock-up schedules, wide-ratio spread transmissions, and electrified propulsion systems are vital towards meeting aggressive fuel economy targets. Judicious combinations of such powertrain and driveline technology packages in conjunction with measures such as the use of low rolling resistance tires and vehicle lightweighting will be required to meet future OEM fleet CO2 targets. Many of the technologies needed for meeting the fuel economy and CO2 targets come with unique NVH challenges. In order to ensure customer acceptance of new vehicles, it is imperative that these NVH challenges be understood and solved.
X