Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Aluminum Tube Hydroforming: Formability and Mechanical Properties

2005-04-11
2005-01-1392
Aluminum tube hydroforming offers further mass savings and performance improvement compared to solid stampings and castings. This paper reports the formability of 6063-T4 extruded tubes and 5754 seam-welded tubes. Tensile and fatigue properties of the hydroformed sections are investigated. The results also show that despite its lower yield strength (but higher ultimate tensile strength and ductility), the hydroformed 5754 alloy has higher fatigue resistance than the 6063-T7 material.
Technical Paper

Development of Creep-Resistant Magnesium Alloys for Powertrain Applications: Part 1 of 2

2001-03-05
2001-01-0422
A family of low-cost, creep-resistant magnesium alloys has been developed. These alloys, containing aluminum, calcium, and strontium are designated as “ACX” alloys. Developed for engine blocks and transmissions, the “ACX” alloys have at least 40% greater tensile and 25% greater compressive creep resistance than AE42, and corrosion resistance as good as AZ91D (GMPG 9540P/B corrosion test). These alloys are estimated to cost only slightly more than AZ91D and have as good castability. Creep data up to 200°C, tensile properties at room temperature and 175°C, corrosion results and microstructure analysis are presented and discussed. These alloys have the potential to enable the extension of the substantial weight reduction benefits of magnesium to powertrain components.
Technical Paper

Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions

2010-04-12
2010-01-0410
Magnesium alloy extrusions offer potentially more mass saving compared to magnesium castings. One of the tasks in the United States Automotive Materials Partnership (USAMP) ?Magnesium Front End Research and Development? (MFERD) project is to evaluate magnesium extrusion alloys AM30, AZ31 and AZ61 for automotive body applications. Solid and hollow sections were made by lowcost direct extrusion process. Mechanical properties in tension and compression were tested in extrusion, transverse and 45 degree directions. The tensile properties of the extrusion alloys in the extrusion direction are generally higher than those of conventional die cast alloys. However, significant tension-compression asymmetry and plastic anisotropy need to be understood and captured in the component design.
Technical Paper

Tensile Creep and Microstructure of Magnesium-Aluminum-Calcium Based Alloys for Powertrain Applications - Part 2 of 2

2001-03-05
2001-01-0423
This paper describes the tensile creep and microstructure of Mg-Al-Ca-based ACX magnesium alloys being developed for powertrain applications. Important creep parameters, i.e., secondary creep rate and creep strength, for the new alloys are reported. Tensile creep properties of the newly developed ACX alloys are significantly better than those of AE42 alloy, which is the benchmark creep-resistant magnesium die casting alloy. Creep mechanisms for different temperature/stress regimes are proposed. A new intermetallic phase, (Mg,Al)2Ca, was identified in the microstructure of the ACX alloys, and is proposed to be responsible for the improved creep resistance of the alloys.
Technical Paper

Wrought Magnesium Alloys and Manufacturing Processes for Automotive Applications

2005-04-11
2005-01-0734
In this paper, the mechanical properties, structural performance and mass saving potential of wrought magnesium alloys are compared to several major automotive materials: mild steel, advanced high-strength steel, cast and wrought aluminum, cast magnesium, plastics and fiber-reinforced composites. Manufacturing processes including welding and joining of magnesium extrusions and sheet products are critically reviewed. The current and potential applications of wrought magnesium alloys in automotive interior, body and chassis areas are discussed. Technical challenges and research opportunities for these applications are identified.
X