Refine Your Search

Search Results

Technical Paper

A Comprehensive Study of Hole Punching Force for AHSS

2018-04-03
2018-01-0802
The elevated strength of advanced high strength steels (AHSS) leads to enormous challenges for the sheet metal processing, one of which is hole punching operation. The total tonnage must be estimated at each trimming stage to ensure successful cutting and protect the press machine. This paper presents the effects of hole punch configurations on the punching force with the consideration of punch shape, cutting clearance and material grade. The hole punching experiments were performed with DP590, DP980, DP1180 and one mild steel as a reference. The punching force coefficient is defined and presents a negative correlation with the material strength based on the experimental data. Surface quality was examined to analyze the damage accumulation during the punching process. The cutting mechanisms with various punch shapes were revealed through an extensive finite element simulation study.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Technical Paper

A Practical Failure Limit for Sheared Edge Stretching of Automotive Body Panels

2010-04-12
2010-01-0986
Edge cracking is one of the major formability concerns in advanced high strength steel (AHSS) stamping. Although finite element analysis (FEA) together with the Forming Limit Diagram has been widely used, it has not effectively predicted edge cracking. Primary problems in developing a methodology to insure that parts are safe from edge cracking are the lack of an effective failure criterion and a simple and accurate measurement method that is not only usable in both die tryout and production but also can be verified by finite element analysis. The intent of this study is to develop a methodology to ensure that parts with internal cutouts, such as a body side panel can be produced without edge cracking. During tryout and production, edge cracking has traditionally been detected by visual examination, but this approach is not adequate for ensuring freedom from edge cracking.
Technical Paper

An Analytical Model for Spring-Back Prediction in U-Channel Forming with Advanced High Strength Steel

2018-04-03
2018-01-0805
Spring-back phenomena are critical in stamping procedures for advanced high strength steel. An analytical model is developed to predict the spring-back effect for a U-channel part with post-stretching process. The stress distribution is obtained by direct application of material constitutive relationship. The subjected loading conditions are sequentially bending, (un-bending), and uniform stretching, based on different zones in the part. Both the loading history and the friction effects are considered in the model. The bending moments are obtained to generate a theoretical spring-back shape. Great performance in spring-back control is achieved by applying certain high level of external forces. FE simulation is conducted for the identical stamping process with post-stretching. Good correlation is observed between the analytical and numerical solutions/experimental results under various scenarios.
Technical Paper

Applying Advanced High Strength Steels on Automotive Exterior Panels for Lightweighting and Dent Resistance

2020-04-14
2020-01-0535
The lightweighting potential brought by advanced high strength steels (AHSS) was studied on automotive exterior panels. The dent resistance was selected as a measure to quantify the lightweighting since it is the most crucial for exterior panels. NEXMET® 440EX and 490EX, which possess both the surface quality and high strength, are evaluated and compared with BH210 and BH240. The denting analysis was conducted first on representative plates with different curvatures to simulate the dented areas on door outer, roof and hood panels. In addition, both 1% and 2% pre-strain and baking scenarios are considered for this plate, which represent the most common situations for exterior panels. The maximal dent load that the plates can sustain was calculated and compared for all those steel grades. Then the dent resistance analysis was conducted on a selected door outer panel. The minimum gauge required to meet the dent resistance performance was obtained.
Technical Paper

C-STARTM Protection

2024-04-09
2024-01-2197
Electrification is the future of the automotive industry and with the rapid growth of Battery Electric Vehicle (BEV) market, battery protection becomes more and more crucial. Side pole impact is one of the most challenging safety load cases. Rocker assembly, as the first line of defense, plays a significant role during the event. This paper proposes Cleveland-Cliffs Steel Tube as Reinforcement (C-STARTM) protection as an application for rocker reinforcement. For a component level assessment, three-point bending is used as a testing method to replicate pole impact. The performance is compared with aluminum baseline with respect to peak force and energy absorption. Test and CAE simulations have been performed and a well calibrated CAE model is utilized to predict the robustness of various steel designs using different grades, gauges and geometries.
Journal Article

Crash Safety Design for Lithium-ion Vehicle Battery Module with Machine Learning

2022-03-29
2022-01-0863
Lithium-ion battery systems have been used as the main power source for electric vehicles due to their lightweight and high energy density. The impact safety of these battery systems has been a primary issue. In this work, the crashworthiness design of a typical vehicle battery module is implemented through numerical (finite element) simulations integrated with machine learning algorithms (decision trees). The module with multiple layered porous cells is modeled with a simplified, homogeneous material law, and subjects to the impact of a cylindrical indenter. The main protective component on the module - cover plate is designed as an energy absorbing sandwich structure with a core of cellular solids. Large scale simulations are conducted with various design variable values for the sandwich structure, and the results form a design (simulation) dataset.
Journal Article

Crushing Behavior of Vehicle Battery Pouch Cell and Module: A Combined Experimental and Theoretical Study

2018-04-03
2018-01-1446
Lithium-ion (Li-ion) batteries are considered as one of the solutions for electric vehicles (EV) in the automotive industry due to their lightweight and high energy density. Their mechanical performance is of great importance for EV crashworthiness design. In this study, quasi-static and dynamic indentation tests were conducted on commercially available vehicle battery pouch cells to investigate their structural integrity. Three indenters, namely, a 19.1 mm (3/4 in.) diameter flat end (FE), a 25.4 mm (1 in.) diameter hemispherical (LH), and a 12.7 mm (1/2 in.) diameter hemispherical (SH), were used to investigate the punch force-deflection responses of the cells. Loading velocity varied in the range of 0.06 mm/s to 3 m/s to test the strain rate effect. Simplified closed-form analysis solutions were developed to predict the pouch cell force-deflection response by considering the effect of compression, tension, and shear of the battery component materials.
Journal Article

Development of a Detailed 3D Finite Element Model for a Lithium-Ion Battery Subject to Abuse Loading

2023-04-11
2023-01-0007
Lithium-ion batteries (LIBs) have been used as the main power source for Electric vehicles (EVs) in recent years. The mechanical behavior of LIBs subject to crush loading is crucial in assessing and improving the impact safety of battery systems and EVs. In this work, a detailed 3D finite element model for a commercial vehicle battery was built, in order to better understand battery failure behavior under various loading conditions. The model included the major components of a prismatic battery jellyroll, i.e., cathodes, anodes, and separators. The models for these components were validated against the corresponding material coupon tests (e.g., tension and compression). Then the components were integrated into the cell level model for simulation of jellyroll loading and damage behavior under three types of compressive indenter loading: (1) Flat-end punch, (2) Hemispherical punch and (3) Round-edge wedge. The comparisons showed reasonable agreement between modeling and experiments.
Technical Paper

Dimension Study of Punched Hole Using Conical Tipped Punches

2016-04-05
2016-01-0364
Dimensional problems for punched holes on a sheet metal stamping part include being undersized and oversized. Some important relationships among tools and products, such as the effect of conical punch tip angle, are not fully understood. To study this effect, sheets of AA6016 aluminum and BH210 steel were punched by punches with different conical tip angles. The test method and test results are presented. The piercing force and withdrawing force when using conical punches were also studied. The results indicate that the oversize issue for a punched hole in a stamped panel is largely due to the combination of the conical tip effect and the stretching-release effect.
Technical Paper

Effect of Pre-Strain on Edge Cracking Limit for Advanced High-Strength Steel Using Digital Image Correlation

2017-03-28
2017-01-0394
Advanced high-strength steel (AHSS) is gaining popularity in the automotive industry due to its higher final part strength with the better formability compares to the conventional steel. However, the edge fracture occurs during the forming procedure for the pre-strained part. To avoid the edge fracture that happens during the manufacturing, the effect of pre-strain on edge cracking limit needs to be studied. In this paper, digital image correlation (DIC), as an accurate optical method, is adopted for the strain measurement to determining the edge cracking limit. Sets of the wide coupons are pre-strained to obtain the samples at different pre-strain level. The pre-strain of each sample is precisely measured during this procedure using DIC. After pre-straining, the half dog bone samples are cut from these wide coupons. The edge of the notch in the half dog bone samples is created by the punch with 10% clearance for the distinct edge condition.
Journal Article

Effects of Punch Configuration on the AHSS Edge Stretchability

2017-03-28
2017-01-1705
The hole piercing process is a simple but important task in manufacturing processes. The quality requirement of the pierced hole varies between different applications. It can be either the size or the edge quality of the hole. Furthermore, the pierced hole is often subject to a secondary forming process, in which the edge stretchability is of a main concern. The recently developed advanced high strength steels (AHSS) and ultra high strength steels (UHSS) have been widely used for vehicle weight reduction and safety performance improvements. Due to the higher strength nature of these specially developed sheet steels, the hole piercing conditions are more extreme and challenging, and the quality of the pierced hole can be critical due to their relatively lower edge stretching limits than those for the conventional low and medium strength steels. The stretchability of the as-sheared edge inside the hole can be influenced by the material property, die condition and processing parameters.
Technical Paper

Effects of Punch Shapes and Cutting Configurations on the Dimensional Accuracy of Punched Holes on an AHSS Sheet

2018-04-03
2018-01-0800
Dimensional accuracy of punched hole is an essential consideration for high-quality sheet metal forming. An out-of-shape hole can give rise to manufacturing issues in the subsequent production processes thus inducing quality defects on a vehicle body. To understand the effects of punch shapes and cutting configurations on punched hole diameter deviations, a systematical experimental study was conducted for multiple types of AHSS (DP1180, DP980, DP590) and one mild steel. Flat, conical and rooftop punches were tested respectively with three cutting clearances on each material. The measurement results indicated different diameter enlargement modes based on the punch profiles, and dimensional discrepancies were found to be more significant with the stronger materials and higher cutting clearance. To uncover the mechanism of punched hole enlargement, a series of finite element simulations were established for numerical investigation.
Technical Paper

Evaluation of Metal Gainers for Advanced High Strength Steel Flanging

2014-04-01
2014-01-0985
Forming a metal gainer is a common technique used to gather material in a high stretch region along an edge in preparation for a subsequent flanging operation. This technique has proven to be successful for mild steels, but needs to be evaluated for the applicability to advanced high strength steels (AHSS). The Auto/Steel Partnership High Strength Stamping Team launched a project for this study. Experimental trials were conducted on gainer forming, trimming and flanging. Twelve (12) AHSS have been tested with tensile strengths ranging from 460 to 1240 MPa. Edge stretch limits for flanging have been evaluated and compared to flanging without gainers. Different trimming and flanging approaches have also been tried. The results show that metal gainers are not advantageous for flanging of higher strength AHSS.
Journal Article

Evaluation of Prog-Die Wear Properties on Bare DP1180 Steel

2017-03-28
2017-01-0310
The die wear up to 80,800 hits on a prog-die setup for bare DP1180 steel was investigated in real production condition. In total, 31 die inserts with the combination of 11 die materials and 9 coatings were evaluated. The analytical results of die service life for each insert were provided by examining the evolution of surface wear on inserts and formed parts. The moments of appearance of die defects, propagation of die defects, and catastrophic failure were determined. Moreover, the surface roughness of the formed parts for each die insert was characterized using Wyko NT110 machine. The objectives of the current study are to evaluate the die durability of various tooling materials and coatings for flange operations on bare DP 1180 steel and update OEM tooling standards based on the experimental results. The current study provides the guidance for the die material and coating selections in large volume production for next generation AHSSs.
Technical Paper

Measurement of Strain Distribution for Hole Expansion with Digital Image Correlation (DIC) System

2011-04-12
2011-01-0993
Advanced high strength steels (AHSS) are increasingly used in automotive industry. A major issue for AHSS stamping is edge cracking. This failure mode is difficult to predict by conventional forming limit curve (FLC). The material edge stretchability is mainly evaluated using the hole expansion test. In this study, digital Image Correlation (DIC) is applied for strain measurement. DIC is a non-contact, full field, high accuracy and direct measurement technique that provides more detailed information for the evolution of strains on the sheet surface. Tests were conducted for five AHSS and nine cases. This paper will explain in detail the DIC technique and its results.
Technical Paper

Numerical Investigation of Optimal Rooftop Punch Shape for Force Reduction and Dimensional Accuracy Control

2019-04-02
2019-01-1091
The rooftop punch is proposed to reduce the maximum cutting force during the trimming operation for advanced high strength steels (AHSS), by introducing a shearing angle at the tool edge. However, such non-simultaneous shearing mechanism results in the inconsistent deformation around the hole perimeter, and consequently affects the dimensional accuracy of the trimmed hole. A numerical study was conducted to investigate the effects of punch tipping angle and tipping heights on the force reduction and dimensional discrepancies. The 60mm hole punching operation for DP 1180 (1.2mm) material was simulated with finite element analysis. The tipping height was reduced by introducing flat portions to the rooftop punch and it can mitigate the material deformation difference before trimming. The results showed tipping height played a significant role of dimensional accuracy control by adopting small tipping angle and broad flat portions.
Technical Paper

Numerical Modeling of Lithium-Ion Battery Cells and Modules Subjected to Low Speed Indentation

2020-04-14
2020-01-0451
Lithium-ion (or Li-ion) battery systems are being increasingly used as the main power source in new generation hybrid and electric vehicles. Their mechanical integrity under abuse loading conditions is very important for vehicle safety design. In this research, a computational study was performed to simulate mechanical tests on vehicle battery cells and modules. The tests were conducted on commercial Li-ion battery cells and entire modules at low speed using a high capacity material testing system. Based on loading and boundary conditions during the tests, finite element (FE) models using the explicit FEA solver LS-DYNA, were developed. The model predictions demonstrated reasonable agreement in terms of failure modes and force-displace response at both cell and module levels.
Technical Paper

Numerical Study of Twist Spring-back Control with an Unbalanced Post-stretching Approach for Advanced High Strength Steel

2018-04-03
2018-01-0806
Twist spring-back would interfere with stamping or assembling procedures for advanced high strength steel. A “homeopathic” resolution for controlling the twist spring-back is proposed using unbalanced post-stretching configuration. Finite element forming simulation is applied to evaluate and compare the performance for each set of unbalanced post-stretching setup. The post-stretching is effectuated by stake bead application. The beads are separated into multiple independent segments, the height and radii of which can be adjusted individually and asymmetrically. Simulation results indicate that the twist spring-back can be effectively controlled by reducing the post-stretching proximate to the asymmetric part area. Its mechanism is qualitatively revealed by stress analyses, that an additional but acceptable cross-sectional spring-back re-balances the sprung asymmetrical geometry to counter the twist effect.
Technical Paper

Perforation Corrosion on Automotive Steel - Comparison of Accelerated Indoor Corrosion Test and Field Performance

1997-02-24
971001
The use of cyclic corrosion tests which consist of salt spraying, humidifying, and drying phases is desirable in the evaluation of the corrosion performance of automotive body panels. In this work, coupons of zinc-coated steel and of cold rolled steel were exposed to a defined cyclic corrosion test (CCT) which has shown to be suitable for simulating diverse outdoor conditions for evaluating the cosmetic corrosion of precoated steel. Micro-environment data in the gap of lapped panel specimens, such as wetness, corrosion rate of test materials, pH value, chloride content, have been obtained during the CCT test. The galvanic current flowing between a gold electrode and the test materials was measured to monitor the degree of wetness inside the crevice. The results show that the surface of the test materials never became really dry even during the dry period of the CCT cycle. Furthermore, the wetness during wet and dry periods in the crevice increased with increasing number of CCT cycle.
X