Refine Your Search

Topic

Search Results

Standard

CHEMICAL METHODS FOR THE MEASUREMENT OF NONREGULATED DIESEL EMISSIONS

1989-10-01
HISTORICAL
J1936_198910
This document encompasses analytical procedures for measuring nonregulated diesel exhaust emissions. Methods are recommended for the measurement of aldehydes and carbonyl compounds, sulfates and the characterization of diesel exhaust particulates. Informational methods are presented for the measurement of polycyclic aromatic hydrocarbons (PAH) in diesel exhaust particulate samples. The procedures are based on current proven chemical and engineering practices. However, it should be noted that the procedures are subject to change to keep pace with established experience and technology.
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1978-04-01
HISTORICAL
J1094A_197804
This SAE Recommended Practice describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. In some areas of CVS practice, alternate procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: 1. Introduction 2. Definitions 3. Test Equipment 3.1 Sampler 3.2 Bag Analysis 3.3 Modal Analysis 3.4 Instrument Operating Procedures 3.5 Supplementary Discussions 3.6 Tailpipe Connections 3.7 Chassis Dynamometer 4. Operating and Calibrating Procedure 4.1 Calibration 4.2 Operating Procedures 5. Data Analysis 5.1 Bag Analysis 5.2 Modal Analysis 5.3 Background 5.4 Fuel Economy 6. Safety
Standard

CONSTANT VOLUME SAMPLER SYSTEM FOR EXHAUST EMISSIONS MEASUREMENT

1992-06-01
HISTORICAL
J1094_199206
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

Constant Volume Sampler System for Exhaust Emissions Measurement

2011-09-06
CURRENT
J1094_201109
This SAE Information Report describes uniform laboratory techniques for employing the constant volume sampler (CVS) system in measuring various constituents in the exhaust gas of gasoline engines installed on passenger cars and light trucks. The techniques described relate particularly to CVS systems employing positive displacement pumps. This is essentially an almost obsolete system relative to usage in industry and government. Current practice favors the use of a critical flow venturi to measure the diluted exhaust flow. In some areas of CVS practice, alternative procedures are given as a guide toward development of uniform laboratory techniques. The report includes the following sections: Introduction 1. Scope 2. References 2.1 Applicable Publications 3. Definitions 4. Test Equipment 4.1 Sampler 4.2 Bag Analysis 4.3 Modal Analysis 4.4 Instrument Operating Procedures 4.5 Supplementary Discussions 4.6 Tailpipe Connections 4.7 Chassis Dynamometer 5.
Standard

DESIGN GUIDE FOR FORMED-IN-PLACE GASKETS

1994-04-05
HISTORICAL
J1497_199404
This SAE Recommended Practice presents information which is intended as a guide for proper designing, selection, application, and servicing of liquid, formed-in-place gasket (FIPG) materials.
Standard

DIESEL EMISSION PRODUCTION AUDIT TEST PROCEDURE

1988-05-01
HISTORICAL
J1243_198805
The recommended practice applies to a production dynamometer test procedure which can be used to measure the smoke and gaseous emission characteristics of vehicular diesel engines. This procedure describes the smoke emission test method, smoke test cycle, gaseous emission test method, steady-state gaseous emission test cycle, equipment, instrumentation, calibration, data analysis, and correlation of results for comparison of production engine emission performance to the requirements of current or past Federal regulations. Variations in engines, instrumentation, and test equipment may require modifications to these procedures or data reduction methods. The acceptability of this procedure is dependent upon documented statistical data appropriate to correlate all tests, data reduction techniques, and special instrumentation to the required Federal tests.
Standard

DIESEL EMISSION PRODUCTION AUDIT TEST PROCEDURE

1979-08-01
HISTORICAL
J1243_197908
The recommended practice applies to a production dynamometer test procedure which can be used to measure the smoke and gaseous emission characteristics of vehicular diesel engines. This procedure describes the smoke emission test method, smoke test cycle, gaseous emission test method, gaseous emission test cycle, equipment, instrumentation, calibration, data analysis, and correlation of results for comparison of production engine emissions performance to the requirements of the Federal regulations. Variations in engines, instrumentation, and test equipment may require modifications to these procedures or data reduction methods. The acceptability of this procedure is dependent upon documented statistical data appropriate to correlate all tests, data reduction techniques, and special instrumentation to the required Federal tests.
Standard

DIESEL ENGINE EMISSION MEASUREMENT PROCEDURE

1990-06-01
HISTORICAL
J1003_199006
This SAE Recommended Practice is intended for use as a test procedure to determine the gaseous emission levels of diesel engines. Its purpose is to provide a map of an engine's emissions characteristics which, through use of the proper weighting factors, can be used as a measure of that engine's emission levels under various applications. The emission results for hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide are expressed in units of grams per kilowatt hour (grams/brake horsepower hour) and represent the mass rate of emissions per unit of work accomplished. The emissions are measured in accordance with SAE Recommended Practices J177, J215, and J244 using nondispersive infrared equipment for CO and CO2, a heated flame ionization analyzer for HC, and a high performance NDIR or a chemiluminescence analyzer for NOx. All emissions are measured during steady-state engine operation.
Standard

Diesel Smoke Measurement Procedure

1995-03-01
HISTORICAL
J35_199503
This SAE Recommended Practice applies to the dynamometer test procedure which can be used to assess the smoke emission characteristics of vehicular diesel engines. In particular, this procedure describes the smoke test cycle, equipment and instrumentation, instrument checks, chart reading, and calculation for evaluation of an engine's transient smoke emission characteristic. In addition, this procedure offers guidelines to be used in establishing correlation between full flow in-line and end-of-line opacimeters. Since the type of test described here is transient in nature, a fast responding full flow opacimeter is required for the smoke measurements. Slow responding or sampling, or both, type instruments must not be used since they typically have excessive and variable response delays and do not provide an accurate measurement of an engine's transient smoke characteristics.
Standard

EMISSION TEST DRIVING SCHEDULES

1991-06-01
HISTORICAL
J1506_199106
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this document will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This document includes: a. Descriptions of driving schedules; and b. Second-by second definition of speed versus time sequences.
Standard

EMISSION TEST DRIVING SCHEDULES

1988-06-01
HISTORICAL
J1506_198806
This SAE Information Report describes various dynamometer driving schedules currently in use in the world for measurement of exhaust emissions and fuel economy of passenger cars and light trucks. Issuance of this information report will allow driving schedules to be deleted from individual test procedures, thus reducing the amount of repeated information in the SAE Handbook. This information report includes: 1 - Descriptions of driving schedules. 2 - Second-by second definition of speed versus time sequences.
Standard

EMISSIONS TERMINOLOGY AND NOMENCLATURE

1976-08-01
HISTORICAL
J1145_197608
This recommended practice applies to nomenclature of emissions and emissions reduction apparatus as applied to various engines and vehicles. Modifying adjectives are omitted in some cases for the sake of simplicity. However, it is considered good practice to use such adjectives when they add to clarity and understanding.
Standard

ENGINE MOUNTINGS

1985-07-01
HISTORICAL
J615_198507
This SAE Standard defines engine mounting dimensions for industry standardization and interchangeability. Table 1 and Fig. 1 are dimensions for arm type mountings. Table 2 and Fig. 2 are for side pad mountings. For engine housing SAE flange dimensions, see SAE J617. For engine foot type mountings (front and rear), see SAE J616.
Standard

IMPACT OF ALTERNATIVE FUELS ON ENGINE TEST AND REPORTING PROCEDURES

1995-06-28
HISTORICAL
J1515_199506
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1971-06-01
HISTORICAL
J254_197106
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and grab sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), nitric oxide (NO), nitrogen dioxide (NO2), and oxygen (O2). This recommended practice includes the following sections: 1. Introduction 2. Definitions and Terminology 3. Sampling and Instrumentation 4. Associated Test Equipment 5. Test Procedures Appendix—Other Measurement Technology
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1993-09-09
HISTORICAL
J254_199309
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). A complete procedure for testing vehicles may be found in SAE J1094. This document includes the following sections: 1 Scope 2 References 3 Emissions Sampling Systems 4 Emissions Analyzers 5 Data Analysis 6 Associated Test Equipment 7 Test Procedures
Standard

INSTRUMENTATION AND TECHNIQUES FOR EXHAUST GAS EMISSIONS MEASUREMENT

1984-08-01
HISTORICAL
J254_198408
This SAE Recommended Practice establishes uniform laboratory techniques for the continuous and bag-sample measurement of various constituents in the exhaust gas of the gasoline engines installed in passenger cars and light-duty trucks. The report concentrates on the measurement of the following components in exhaust gas: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO2), oxygen (O2), and nitrogen oxides (NOx). NOx is the sum of nitric oxide (NO) and nitrogen dioxide (NO2). Historical techniques still used for some purposes are included in the Appendices. A complete procedure for testing vehicles may be found in SAE Recommended Practice J1094, Constant Volume Sampler System for Exhaust Emissions Measurement. This recommended practice includes the following sections: (1) Introduction (2) Definitions and Terminology (3) Emissions Sampling Systems (4) Emissions Analyzers (5) Data Analysis and Reduction (6) Associated Test Equipment (7) Test Procedures (8) Appendices A, B, and C
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
X