Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Flexural Behavior of Hybrid Layered Composites Suitable for Automotive Structural Applications

2021-10-01
2021-28-0210
Electric vehicle is the current trend in automotive industry. A light weight material at affordable cost is preferred for these types of vehicles. Composite is a suitable material for this due to their attractive strength-to-weight ratio. Even though carbon fiber reinforced composites provide very good strength and modulus its usage is limited because of their higher price. Hybrid laminates stacked with glass/carbon/kevlar fiber layer shall provide good strength at lower cost. This work focus on the flexural behaviour of glass fiber reinforced laminates stacked with carbon and kevlar fiber as outer layer. Laminates were prepared by hand lay-up method. Three-point bending test was conducted as per ASTM standard. A significant improvement in flexural modulus and bending resistance was observed for the glass/carbon-epoxy hybrid laminates when compared with the glass-epoxy laminate. The failure mechanism was also studied using optical micrographs.
Technical Paper

Low Velocity Impact Strength of Cryogenic Treated Glass-Carbon Fiber Reinforced Composite Panels

2022-12-23
2022-28-0569
FRP composites are considered potential materials for electric vehicle body parts. Researchers are constantly working to improve the properties of these materials using a variety of methods. In this work, laminates are treated at cryogenic temperature to enhance their properties. A multi-layer composite material reinforced with glass fiber and carbon fiber in different orientations was prepared. Tensile properties such as ultimate tensile strength, tensile Modulus, and Poisson’s Ratio of flat laminates were determined by static tension tests based on the ASTM D3039 standard. The low-velocity impact test was performed using a drop-weight impact test to determine the peak load, energy absorbed, and deformation values. The Young’s modulus and Poison’s ratio value of the treated and untreated glass-epoxy laminate material were studied and compared. The damaged area of the specimen was calculated by taking an x-ray image of the test specimen.
Technical Paper

Mechanical Studies on Polycaprolactone Based Green Composite

2021-10-01
2021-28-0242
In the last decade, there was growing interest in the use of green composites because of their environment-friendly nature, improvement in mechanical & chemical properties, better processability, and low cost. In this work, short sisal fiber was reinforced in a polycaprolactone (PCL) matrix and four different degradable green composites were developed with different weight fractions. Experimental studies were conducted as per standard to find the mechanical properties of PCL based composites. The data obtained shows that there is a 22% increase in tensile strength, 18% increase in hardness and 100% increase in impact strength for the specimen with 10% sisal fiber compared to neat PCL specimen. The mechanical property reduces when the fiber content is increased to 15%. These PCL based composites shall find applications in the packaging industry and consumer goods that have less service temperature.
X