Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Application of Fatigue Life Prediction Methods for GMAW Joints in Vehicle Structures and Frames

2011-04-12
2011-01-0192
In the North American automotive industry, various advanced high strength steels (AHSS) are used to lighten vehicle structures, improve safety performance and fuel economy, and reduce harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using Gas Metal Arc Welding (GMAW) in the current generation body-in-white structures. Additionally, fatigue failures are most likely to occur at joints subjected to a variety of different loadings. It is therefore critical that automotive engineers need to understand the fatigue characteristics of welded joints. The Sheet Steel Fatigue Committee of the Auto/Steel Partnership (A/S-P) completed a comprehensive fatigue study on GMAW joints of both AHSS and conventional sheet steels including: DP590 GA, SAE 1008, HSLA HR 420, DP 600 HR, Boron, DQSK, TRIP 780 GI, and DP780 GI steels.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

Effect of Engine Motion on the Fatigue Life of Cooling Components

2017-03-28
2017-01-0337
Ensuring durability is one of the key requirements while developing cooling modules for various powertrains. Typically, road surface induced loads are the main driving force behind mechanical failures. While developing the components, road load accelerations are utilized in CAE simulations to predict the high-stress regions and estimate the fatigue life of the components mounted on the body. In certain scenarios where components are mounted to the body and attached to the engine with hoses, the components can experience additional loads associated with engine vibration. This attachment scheme requires a different analysis methodology to determine fatigue life. In the proposed paper, we look at the effect of engine motion (EM) on the fatigue life of internal transmission oil cooler (ITOC) which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe. We propose a new CAE methodology taking into account the engine motion displacements.
Technical Paper

Experimental Study of Bismuth Alloy Overlays for Automotive Engine Bearing

2021-04-06
2021-01-0685
Bismuth has been applied successfully as sliding bearing overlay material in internal combustion engines, where a good combination of sliding properties, mechanical strength and corrosion resistance can be attained. However, environmental pressures driving towards lower emission and higher fuel efficiency are set to raise firing loads above the capability of many state-of-the-art bismuth materials in the market. At the same time, in order to meet increasingly stringent environmental regulations modern engines are adapting to more efficient and economic designs which put bearing materials under ever growing pressure to provide enhanced oxidation resistance and robustness to cope with elevated engine operating temperature and tighter oil clearance.
Technical Paper

Material Property and Formability Characterization of Various Types of High Strength Dual Phase Steel

2009-04-20
2009-01-0794
As a result of the increasing usage of high strength steels in automotive body structures, a number of formability issues, particularly bend and edge stretch failures, have come to the forefront of attention of both automotive OEMs and steel makers. This investigation reviews these stamping problems and attempts to identify how certain material properties and microstructural features relate to forming behavior. Various types of dual phase steels were evaluated in terms of tensile, bending, hole expansion, limiting dome height, and impact properties. In addition, the key microstructural differences of each grade were characterized. In order to understand the material behavior under practical conditions, stamping trials were conducted using actual part shapes. It was concluded that material properties can be optimized to maximize local formability in stamping applications. The results also emphasize that the dual phase classification can encompass a broad range of property variations.
Technical Paper

Optimizing the Geometry of Fan-Shroud Assembly Using CFD

2015-04-14
2015-01-1336
Underhood thermal management is a challenging problem in automotive industry. In order to make sure that vehicle works efficiently, there should be enough airflow through the cooling system so that the consequent heat rejection would be adequate. In idle condition the required air flow is provided by the cooling fan so a better understanding and an accurate predictive CAE tool for fan is very beneficial. Computational Fluid Dynamics (CFD) has been extensively used in predicting aerodynamic performance of automotive components. In the current work, the airflow performance of a fan, shroud and radiator assembly was simulated using Moving Reference Method (MRF) method. Although it is less expensive than Sliding Mesh (SM) method, the CAE results compare well with the test data. The simulation was carried out over 10+ different shrouds and the effect of geometrical parameters on airflow was investigated.
Technical Paper

Region Proposal Technique for Traffic Light Detection Supplemented by Deep Learning and Virtual Data

2017-03-28
2017-01-0104
In this work, we outline a process for traffic light detection in the context of autonomous vehicles and driver assistance technology features. For our approach, we leverage the automatic annotations from virtually generated data of road scenes. Using the automatically generated bounding boxes around the illuminated traffic lights themselves, we trained an 8-layer deep neural network, without pre-training, for classification of traffic light signals (green, amber, red). After training on virtual data, we tested the network on real world data collected from a forward facing camera on a vehicle. Our new region proposal technique uses color space conversion and contour extraction to identify candidate regions to feed to the deep neural network classifier. Depending on time of day, we convert our RGB images in order to more accurately extract the appropriate regions of interest and filter them based on color, shape and size. These candidate regions are fed to a deep neural network.
Technical Paper

Study on the Effect of Gravity on the Performance of CPVA

2023-04-11
2023-01-0456
Most centrifugal pendulum vibration absorber (CPVA) research focuses on the horizontal or vertical plane, ignoring the influence of gravity. However, with the wide application of CPVAs in the automobile industry, some gravity-related problems have been encountered in practice. In this study, employing the second kind of Lagrange equation, the differential equation of motion of a CPVA is established, and the first-order approximate analytical solution is solved using the method of multiple scales. The mathematical relations among the excitation torque amplitude and phase, gravity influence, absorber trajectory shape, absorber position, viscous damping coefficient, and mistuning level parameters are provided for study. Specifically, the second-order responses of four absorbers and two absorbers in a gravity field are studied, and the influence of the change in the torque excitation phase on the response of the absorber is thoroughly analyzed.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Technical Paper

Virtual Transmission Evaluation Using an Engine-in-the-Loop Test Facility

2018-04-03
2018-01-1361
This paper describes an approach to reduce development costs and time by frontloading of engineering tasks and even starting calibration tasks already in the early component conception phases of a vehicle development program. To realize this, the application of a consistent and parallel virtual development and calibration methodology is required. The interaction between vehicle subcomponents physically available and those only virtually available at that time, is achieved with the introduction of highly accurate real-time models on closed-loop co-simulation platforms (HiL-simulators) which provide the appropriate response of the hardware components. This paper presents results of a heterogeneous testing scenario containing a real internal combustion engine on a test facility and a purely virtual vehicle using two different automatic transmission calibration and hardware setups.
X