Refine Your Search

Topic

Search Results

Technical Paper

A Benchmark Test for Springback: Experimental Procedures and Results of a Slit-Ring Test

2005-04-11
2005-01-0083
Experimental procedures and results of a benchmark test for springback are reported and a complete suite of obtained data is provided for the validation of forming and springback simulation software. The test is usually referred as the Slit-Ring test where a cylindrical cup is first formed by deep drawing and then a ring is cut from the mid-section of the cup. The opening of the ring upon slitting releases the residual stresses in the formed cup and provides a valuable set of easy-to-measure, easy-to-characterize springback data. The test represents a realistic deep draw stamping operation with stretching and bending deformation, and is highly repeatable in a laboratory environment. In this study, six different automotive materials are evaluated.
Technical Paper

A Comparison of the Response of HSLA and Dual Phase Sheet Steel in Dynamic Crush

2001-10-16
2001-01-3101
Continuing pressure to reduce mass and cost of vehicles is driving the development of new high strength steel products with improved combinations of strength and formability. Galvanized, cold rolled dual phase steel products are new alternatives to conventional high strength low alloy (HSLA) steel for strength limited applications in vehicles. These steels have higher tensile strengths than HSLA products with nearly equivalent formability. This paper compares the performance of HSLA and dual phase sheet steel products in a series of drop tower tests. Samples were prepared by stamping the steel sheets into typical rail-type parts using a production-intent die process. The parts were sectioned, and subsequently fabricated into hat-shaped assemblies that were then dynamically crushed by a drop weight. The experiments were designed such that the entire energy input by the drop weight was absorbed by the samples.
Technical Paper

A Failure Criterion for Stretch Bendability of Advanced High Strength Steels

2006-04-03
2006-01-0349
Studies in an Angular Stretch Bend Test (ASBT) have demonstrated that the failure location moves from the side wall to punch nose area. This occurs as the R/T ratio decreases below a certain limit and applies to most low carbon steels with the exception of Dual Phase (DP) steels. Such behavior in DP steels indicates that bending effects have a severe impact on the formability of DP materials. Therefore, the traditional criterion using the forming limit curve (FLC) is not suitable to assess the formability at punch radius areas for DP steels due in part to its uniqueness of unconventional microstructures. In this paper, a new failure criterion, ‘Bending-modified’ FLC (BFLC), is proposed by extending the traditional FLC using the “Stretch Bendability Index” (SBI) concept for the stretch bendability assessment.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Technical Paper

An Evaluation of Interface Friction in Different Forming Models for Coated Steel Sheets

1992-02-01
920633
Interface friction between sheet metal and tooling in sheet metal forming is examined in different forming modes using laboratory simulative tests. Stretchability is studied by the limiting dome height test; drawability is investigated by a four inch Swift cup draw test and the coefficient of friction is measured by the draw bead simulator under bending and unbending deformation. The responses of the interface friction in six different coated and uncoated steel sheets are studied using seven different lubricants. It is found that the interface friction between sheet metal and tooling is very sensitive to the forming mode and the type of coating. For the same lubricant and coated material, two different forming modes may produce very different results in interface friction. However, overall good and bad lubricants for all forming modes can be determined for a given coated material using these three tests.
Technical Paper

An Evaluation of the Dynamic Dent Resistance of Automotive Steels

1991-02-01
910287
The effects of sheet thickness, yield strength, strain aging and prestrain on the dynamic dent resistance of sheet steel are investigated using an instrumented drop-weight test. It is found that the dynamic dent resistance is less dependent on the sheet thickness and the yield strength of the material than the static dent resistance. The dent resistance of automotive steels under dynamic loading conditions increases with prestrain in a manner similar to static denting. The relative ranking of different strength steels in the performance of dynamic denting is provided at various strain levels. An empirical relation of dynamic denting force and energy with the sheet thickness and the yield strength of the material is derived for a flat panel. Data confirm that dynamic dent resistance is improved using high strength steels including bake hardenable steels and rephosphorized steels.
Technical Paper

An Experimental Study of Springback for Dual Phase Steel and Conventional High Strength Steel

2001-10-16
2001-01-3106
An experimental study of springback was conducted for a hat channel section with varying cross sections and controlled gap between punch and die. The channel section was formed in a single step forming process with upper pressure pad. DP590 steel was compared to a group of high strength steels (HSS), e.g. HSLA270, 340 and 420. In addition, sidewall curl phenomenon was studied utilizing bending under tension test. This paper describes methodology of experiment and discusses springback related results. It also offers recommendations that can be applied to die-punch gap control or material substitution situations. The results of this investigation can be used to verify accuracy of springback predictions in finite element analysis (FEA).
Technical Paper

An Investigation of Spot-Welded Steel Connections Using a DOE Approach

2003-03-03
2003-01-0612
This paper presents an investigation into the behavior of spot-welded steel connections based on a DOE approach. This work is a part of spot-weld modeling methodology development work being performed at Ford. Control factors such as material, coating, gage size, and noise factors such as loading direction (angle), and speed are considered in this study. Different levels of each variable are included to cover a wide range of practical applications. The test methodology used to generate the responses for the spot-weld coupons have been discussed in a companion paper [1]. From the force-displacement curves obtained from the test, the responses such as peak force, displacement at peak force, and rupture displacement are identified. These responses are then statistically analyzed to identify the relative importance and effect of the design factors. Finally, response surface models are developed to determine responses across different levels of each variable.
Journal Article

Axial Crash Testing and Finite Element Modeling of A 12-Sided Steel Component

2010-04-12
2010-01-0379
To improve the energy absorption capacity of front-end structures during a vehicle crash, a novel 12-sided cross-section was developed and tested. Computer-aided engineering (CAE) studies showed superior axial crash performance of the 12-sided component over more conventional cross-sections. When produced from advanced high strength steels (AHSS), the 12-sided cross-section offers opportunities for significant mass-savings for crash energy absorbing components such as front or rear rails and crush tips. In this study, physical crash tests and CAE modeling were conducted on tapered 12-sided samples fabricated from AHSS. The effects of crash trigger holes, different steel grades and bake hardening on crash behavior were examined. Crash sensitivity was also studied by using two different part fabrication methods and two crash test methods. The 12-sided components showed regular folding mode and excellent energy absorption capacity in axial crash tests.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

Crashworthiness Simulation of Lower Control Arm Impact Tests

2005-04-11
2005-01-0361
Finite element models of cast aluminum and stamped steel lower control arms (LCAs) were created to simulate subsystem tests of LCA with bushings and brackets. Several modeling methods were used to simulate the dynamic responses of cast aluminum LCAs, and the advantages and disadvantages of each method are discussed. Factors that are essential for modeling stamped steel components found in previous studies [1, 2] including strain rate, forming, and welding effects are incorporated in the stamped steel LCA models. Difficulties in modeling LCAs subsystem, possible remedies, and further improvements are also discussed in this paper.
Technical Paper

Determination of Spot Weld Modeling Parameters from Test Data for Finite Element Crash Simulation

2004-03-08
2004-01-0692
The authors have proposed a new formulation to characterize the mechanical properties of spot welds under dynamic loadings including separation. In this paper, the authors primarily discuss a systematic procedure to determine the parameters of the proposed spot weld model from test data using a Design of Experiment (DOE) approach and statistical analyses. All analysis pertaining to the spot weld modeling under impact loading has been performed using RADIOSS, a commercially available explicit FE crash solver. In this study, the spot weld connection was modeled using a two-node beam-type spring element with 6 DOF at each node, and the sheet metal was modeled using a four-node shell element. The main objective was to develop a spot weld modeling methodology that is accurate and robust enough to be used in a full vehicle model which is composed of hundreds of different parts and will be crashed under different test conditions.
Technical Paper

Development of Dynamic Dent Resistance Testing Procedures

2003-03-03
2003-01-0607
The dent resistance of an automotive body panel has been used as one of key design parameters for automotive body panels. Quasi-static dent testing procedures have been well documented in North America using A/SP Standard Dent Resistance Test Procedures and numerous publications in static denting are also available. However, test procedures under dynamic denting are not very well documented and limited data exist on dynamic denting performance of automotive body panels. In this paper, dynamic dent tests are carried out using different impact velocities and different test procedures. The advantages and disadvantages of test procedures are discussed. Different ways to characterize the dynamic dent test results are investigated and discussed. Due to higher impact velocity during the dynamic dent testing, the acceleration effect must be considered in the data analysis. Experiments were carried out on a hydraulic controlled dynamic dent tester.
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Technical Paper

Development of Shear Fracture Criterion for Dual-Phase Steel Stamping

2009-04-20
2009-01-1172
Forming Limit Diagrams (FLD) have been widely and successfully used in sheet metal stamping as a failure criterion to detect localized necking, which is the most common failure mechanism for conventional steels during forming. However, recent experience from stamping Dual-Phase steels found that, under certain circumstances such as stretching-bend over a small die radius, the sheet metal fails earlier than that predicted by the FLD based on the initiation of a localized neck. It appears that a different failure mechanism and mode are in effect, commonly referred to as “shear fracture” in the sheet metal stamping community. In this paper, experimental and numerical analysis is used to investigate the shear fracture mechanism. Numerical models are established for a stretch-bend test on DP780 steel with a wide range of bend radii for various failure modes. The occurrences of shear fracture are identified by correlating numerical simulation results with test data.
Technical Paper

Dynamic Dent Resistance Performance of Steels and Aluminum

1993-03-01
930786
Body panel performance properties such as denting force, oil canning/critical buckling load, initial and secondary stiffnesses under dynamic loading (drop weight test) were measured for different strength steels and two aluminum alloys using both flat and curved sheets. It was found that all these properties varied with the drop velocity. For the steels, the denting force steadily increased with the increase in drop velocity. For the aluminum alloys, the denting force increased with the drop velocity at lower velocities and decreased or remained unchanged at higher velocities. The oil canning/critical buckling load increased with the increase in drop velocity and initial and secondary stiffnesses decreased with the increase in drop velocity for both steel and aluminum. The dent resistance performance for some aluminum alloys with thicker gauge is comparable to steels dent tested at lower velocities.
Journal Article

Experimental Study of Edge Stretching Limits of DP980IBF Steel in Multistage Forming Process

2015-04-14
2015-01-0525
Automotive structural parts made out of Advanced High Strength Steel (AHSS) are often produced in a multistage forming process using progressive dies or transfer dies. During each forming stage the steel is subjected to work hardening, which affects the formability of the steel in the subsequent forming operation. Edge flanging and in-plane edge stretching operations are forming modes that are typically employed in the last stage of the multistage forming processes. In this study, the multistage forming process was simulated by pre-straining a DP980 steel in a biaxial strain path with various strain levels followed by edge flanging and in-plane edge stretching. The biaxial prestrains were obtained using the Marciniak stretch test and edge flanging and in-plane edge stretching were accomplished by the hole expansion test using a flat punch and a conical punch, respectively.
Technical Paper

Experimental and Numerical Studies of Crash Trigger Sensitivity in Frontal Impact

2005-04-11
2005-01-0355
Advanced High Strength Steels (AHSS) along with innovative design and manufacturing processes are effective ways to improve crash energy management. Crash trigger hole is another technology which can been used on front rails for controlling crash buckling mode, avoiding crash mode instability and minimizing variations in crash mode due to imperfections in materials, part geometry, manufacturing, and assembly processes etc. In this study, prototyped crash columns with different trigger hole shapes, sizes and locations were physically tested in frontal crash impact tests. A corresponding crash computer simulation model was then created to perform the correlation study. The testing data, such as crash force-displacement curves and dynamic crash modes, were used to verify the FEA crash model and to study the trigger sensitivity and effects on front rail crash performance.
Technical Paper

Finite Element Modeling of Spot Weld Connections In Crash Applications

2004-03-08
2004-01-0691
Spot welding is the primary joining method used for the construction of the automotive body structure made of steel. A major challenge in the crash simulation today is the lack of a simple yet reliable modeling approach to characterize spot weld separation. In this paper, an attempt has been made to develop a spot weld modeling methodology to characterize spot weld separation in crash simulation. A generalized two-node spring element with 6 DOF at each node is used to characterize the spot weld nugget. To represent the connection of the nugget with the surrounding plates, tied contacts are defined between the spring element nodes and the shell elements of the plate. Three general separation criteria are proposed for the spot weld that include the effects of speed and coupled loading conditions. The separation criteria are implemented into a commercially available explicit finite element code.
X