Refine Your Search

Topic

Author

Search Results

Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

A Study on In-Cycle Control of NOx Using Injection Strategy with a Fast Cylinder Pressure Based Emission Model as Feedback

2013-10-14
2013-01-2603
The emission control in heavy-duty vehicles today is based on predefined injection strategies and after-treatment systems such as SCR (selective catalytic reduction) and DPF (diesel particulate filter). State-of-the-art engine control is presently based on cycle-to-cycle resolution. The introduction of the crank angle resolved pressure measurement, from a piezo-based pressure sensor, enables the possibility to control the fuel injection based on combustion feedback while the combustion is occurring. In this paper a study is presented on the possibility to control NOx (nitrogen oxides) formation with a crank angle resolved NOx estimator as feedback. The estimator and the injection control are implemented on an FPGA (Field-Programmable Gate Array) to manage the inherent time constraints. The FPGA is integrated with the rest of the engine control system for injection control and measurement.
Journal Article

Air-Entrainment in Wall-Jets Using SLIPI in a Heavy-Duty Diesel Engine

2012-09-10
2012-01-1718
Mixing in wall-jets was investigated in an optical heavy-duty diesel engine with several injector configurations and injection pressures. Laser-induced fluorescence (LIF) was employed in non-reacting conditions in order to quantitatively measure local equivalence ratios in colliding wall-jets. A novel laser diagnostic technique, Structured Laser Illumination Planar Imaging (SLIPI), was successfully implemented in an optical engine and permits to differentiate LIF signal from multiply scattered light. It was used to quantitatively measure local equivalence ratio in colliding wall-jets under non-reacting conditions. Mixing phenomena in wall-jets were analyzed by comparing the equivalence ratio in the free part of the jet with that in the recirculation zone where two wall-jets collide. These results were then compared to φ predictions for free-jets. It was found that under the conditions tested, increased injection pressure did not increase mixing in the wall-jets.
Technical Paper

An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion

2010-10-25
2010-01-2198
A Scania 13 1 engine modified for single cylinder operations was run using nine fuels in the boiling point range of gasoline, but very different octane number, together with PRF20 and MK1-diesel. The eleven fuels were tested in a load sweep between 5 and 26 bar gross IMEP at 1250 rpm and also at idle (2.5 bar IMEP, 600 rpm). The boost level was proportional to the load while the inlet temperature was held constant at 303 K. For each fuel the load sweep was terminated if the ignitibility limit was reached. A lower load limit of 15 and 10 bar gross IMEP was found with fuels having an octane number range of 93-100 and 80-89 respectively, while fuels with an octane number below 70 were able to run through the whole load range including idle. A careful selection of boost pressure and EGR in the previously specified load range allowed achieving a gross indicated efficiency between 52 and 55% while NOx ranged between 0.1 and 0.5 g/kWh.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

2005-05-11
2005-01-2137
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
Technical Paper

An Experimental Investigation of a Multi-Cylinder Engine with Gasoline-Like Fuel towards a High Engine Efficiency

2016-04-05
2016-01-0763
Partially Premixed Combustion (PPC) is a promising combustion concept with high thermodynamic efficiency and low emission level, and also with minimal modification of standard engine hardware. To use PPC in a production oriented engine, the optimal intake charge conditions for PPC should be included in the analysis. The experiments in this paper investigated and confirmed that the optimal intake conditions of net indicated efficiency for PPC are EGR between 50% and 55% as possible and the lambda close to 1.4. Heat-transfer energy and exhaust gas waste-energy contribute to the majority of the energy loss in the engine. The low EGR region has high heat-transfer and low exhaust gas enthalpy-waste, while the high EGR region has low heat-transfer and high exhaust gas waste-enthalpy. The optimal EGR condition is around 50% where the smallest energy loss is found as a trade-off between heat transfer and exhaust-gas enthalpy-waste.
Technical Paper

Applicability of Ionization Current Sensing Technique with Plasma Jet Ignition Using Pre-Chamber Spark Plug in a Heavy Duty Natural Gas Engine

2012-09-10
2012-01-1632
This article deals with study of ionization current sensing technique's signal characteristics while operating with pre-chamber spark plug to achieve plasma jet ignition in a 6 cylinder 9 liter turbo-charged natural gas engine under EGR and excess air dilution. Unlike the signal with conventional spark plug which can be divided into distinct chemical and thermal ionization peaks, the signal with pre-chamber spark plug shows a much larger first peak and a negligible second peak thereafter. Many studies in past have found the time of second peak coinciding with the time of maximum cylinder pressure and this correlation has been used as an input to combustion control systems but the absence of second peak makes application of this concept difficult with pre-chamber spark plug.
Journal Article

Autoignition of Isooctane beyond RON and MON Conditions

2018-04-03
2018-01-1254
The present study experimentally examines the low-temperature autoignition area of isooctane within the in-cylinder pressure-in-cylinder temperature map. Experiments were run with the help of a Cooperative Fuel Research (CFR) engine. The boundaries of this engine were extended so that experiments could be performed outside the domain delimited by research octane number (RON) and motor octane number (MON) traces. Since homogeneous charge compression ignition (HCCI) combustion is governed by kinetics, the rotation speed for all the experiments was set at 600 rpm to allow time for low-temperature heat release (LTHR). All the other parameters (intake pressure, intake temperature, compression ratio, and equivalence ratio) were scanned, such as the occurrence of isooctane combustion. The principal results showed that LTHR for isooctane occurs effortlessly under high intake pressure (1.3 bar) and low intake temperature (25 °C).
Technical Paper

Characterization of Partially Premixed Combustion

2006-10-16
2006-01-3412
Partially Premixed Combustion (PPC) provides the potential of simultaneous reduction of NOx and soot for diesel engines. This work attempts to characterize the operating range and conditions required for PPC. The characterization is based on the evaluation of emission and in-cylinder measurement data of engine experiments. It is shown that the combination of low compression ratio, high EGR rate and engine operation close to stoichiometric conditions enables simultaneous NOx and soot reduction at loads of 8bar, 12bar, and 15bar IMEP gross. The departure from the conventional NOx-soot trade-off curve has to be paid with a decline in combustion efficiency and a rise in HC and CO emissions. It is shown that the low soot levels of PPC come along with long ignition delay and low combustion temperature. A further result of this work is that higher inlet pressure broadens the operating range of Partially Premixed Combustion.
Technical Paper

Combustion Behavior of n-Heptane, Isooctane, Toluene and Blends under HCCI Conditions in the Pressure-Temperature Diagram

2018-09-10
2018-01-1684
Homogeneous charge compression ignition (HCCI) experiments were run with the aid of a Cooperative fuel research (CFR) engine, operating at 600 rpm and under very lean conditions (ϕ = 0.3). This study seeks to examine the combustion behavior of different fuels by finding the pressure-temperature (p-t) conditions that instigate the start of combustion, and the transition from low temperature combustion to principal combustion. The pressure-temperature diagram emphasizes p-t conditions according to their traces through the compression stroke. In each fuel tested, p-t traces were examined by a sweep of the intake temperature; and for each experimental point, combustion phasing was maintained at top dead center by adjusting the compression ratio of the engine. In addition to the p-t diagram, results were analyzed using a compression ratio-intake temperature diagram, which showed the compression ratio required with respect to intake temperature.
Technical Paper

Cycle to Cycle Variations in S.I. Engines - The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion

1996-10-01
962084
Simultaneous measurements of early flame speed and local measurements of the major parameters controlling the process are presented. The early flame growth rate was captured with heat release analysis of the cylinder pressure. The local concentration of fuel or residual gas were measured with laser induced fluorescence (LIF) on isooctane/3-pentanone or water. Local velocity measurements were performed with laser doppler velocimetry (LDV). The results show a significant cycle to cycle correlation between early flame growth rate and several parameters. The experiments were arranged to suppress all but one important factor at a time. When the engine was run without fuel or residual gas fluctuations, the cycle to cycle variations of turbulence were able to explain 50 % of the flame growth rate fluctuations. With a significantly increased fluctuation of F/A, obtained with port fuelling, 65% of the growth rate fluctuation could be explained with local F/A measurements.
Technical Paper

Effect of Aromatics on Combustion Stratification and Particulate Emissions from Low Octane Gasoline Fuels in PPC and HCCI Mode

2017-09-04
2017-24-0086
The objective of this study was to investigate the effect of aromatic on combustion stratification and particulate emissions for PRF60. Experiments were performed in an optical CI engine at a speed of 1200 rpm for TPRF0 (100% v/v PRF60), TPRF20 (20% v/v toluene + 80% PRF60) and TPRF40 (40% v/v toluene + 60% PRF60). TPRF mixtures were prepared in such a way that the RON of all test blends was same (RON = 60). Single injection strategy with a fuel injection pressure of 800 bar was adopted for all test fuels. Start of injection (SOI) was changed from early to late fuel injection timings, representing various modes of combustion viz HCCI, PPC and CDC. High-speed video of the in-cylinder combustion process was captured and one-dimensional stratification analysis was performed from the intensity of images. Particle size, distribution and concentration were measured and linked with the in-cylinder combustion images.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Technical Paper

Effects of EGR and Intake Pressure on PPC of Conventional Diesel, Gasoline and Ethanol in a Heavy Duty Diesel Engine

2013-10-14
2013-01-2702
Partially Premixed Combustion (PPC) has the potential of simultaneously providing high engine efficiency and low emissions. Previous research has shown that with proper combination of Exhaust-Gas Recirculation (EGR) and Air-Fuel equivalence ratio, it is possible to reduce engine-out emissions while still keeping the engine efficiency high. In this paper, the effect of changes in intake pressure (boost) and EGR fraction on PPC engine performance (e.g. ignition delay, burn duration, maximum pressure rise rate) and emissions (carbon monoxide (CO), unburned hydrocarbon (UHC), soot and NOX) was investigated in a single-cylinder, heavy-duty diesel engine. Swedish diesel fuel (MK1), RON 69 gasoline fuel and 99.5 vol% ethanol were tested. Fixed fueling rate and single injection strategy were employed.
Technical Paper

Effects of Ethanol and Different Type of Gasoline Fuels on Partially Premixed Combustion from Low to High Load

2010-04-12
2010-01-0871
The behavior of Ethanol and seven fuels in the boiling point range of gasoline but with an Octane Number spanning from 69 to 99 was investigated in Partially Premixed Combustion. A load sweep was performed from 5 to 18 bar gross IMEP at 1300 rpm. The engine used in the experiments was a single cylinder Scania D12. To allow high load operations and achieve sufficient mixing, the compression ratio was decreased from the standard 18:1 to 14.3:1. It was shown that by using only 50% of EGR it is possible to achieve NOx below 0.30 g/kWh even at high loads. At 18 bar IMEP soot was in the range of 1-2 FSN for the gasoline fuels while it was below 0.06 FSN with Ethanol. The use of high boost combined with relatively short combustion duration allowed reaching gross indicated efficiencies in the range of 54 - 56%. At high load the partial stratified mixture allowed to keep the maximum pressure rise rate below 15 bar/CAD with most of the fuels.
Technical Paper

Emission Formation Study of HCCI Combustion with Gasoline Surrogate Fuels

2013-10-14
2013-01-2626
HCCI combustion can be enabled by many types of liquid and gaseous fuels. When considering what fuels will be most suitable, the emissions also have to be taken into account. This study focuses on the emissions formation originating from different fuel components. A systematic study of over 40 different gasoline surrogate fuels was made. All fuels were studied in a CFR engine running in HCCI operation. Many of the fuels were blended to achieve similar RON's and MON's as gasoline fuels, and the components (n-heptane, iso-octane, toluene, and ethanol) were chosen to represent the most important in gasoline; nparaffins, iso-paraffins, aromatics and oxygenates. The inlet air temperature was varied from 50°C to 150°C to study the effects on the emissions. The compression ratio was adjusted for each operating point to achieve combustion 3 degrees after TDC. The engine was run at an engine speed of 600 rpm, with ambient intake air pressure and with an equivalence ratio of 0.33.
Technical Paper

Employing an Ionization Sensor for Combustion Diagnostics in a Lean Burn Natural Gas Engine

2001-03-05
2001-01-0992
An ionization sensor has been used to study the combustion process in a six-cylinder lean burn, truck-sized engine fueled with natural gas and optimized for low emissions of nitric oxides. The final goal of the investigations is to study the prospects of using the ionization sensor for finding the optimal operating position with respect to low NOx emission and stable engine operation. The results indicate that unstable combustion can be detected by analyzing the coefficient of variation (CoV) of the detector current amplitude. Close relationships between this measure and the CoV of the indicated mean effective pressure have been found during an air-fuel ratio scan with fixed ignition advance.
Journal Article

Ethanol-Diesel Fumigation in a Multi-Cylinder Engine

2008-04-14
2008-01-0033
Fumigation was studied in a 12 L six-cylinder heavy-duty engine. Port-injected ethanol was ignited with a small amount of diesel injected into the cylinder. The setup left much freedom for influencing the combustion process, and the aim of this study was to find operation modes that result in a combustion resembling that of a homogeneous charge compression ignition (HCCI) engine with high efficiency and low NOx emissions. Igniting the ethanol-air mixture using direct-injected diesel has attractive properties compared to traditional HCCI operation where the ethanol is ignited by pressure alone. No preheating of the mixture is required, and the amount of diesel injected can be used to control the heat release rate. The two fuel injection systems provide a larger flexibility in extending the HCCI operating range to low and high loads. It was shown that cylinder-to-cylinder variations present a challenge for this type of combustion.
Journal Article

Exhaust PM Emissions Analysis of Alcohol Fueled Heavy-Duty Engine Utilizing PPC

2016-10-17
2016-01-2288
The focus has recently been directed towards the engine out soot from Diesel engines. Running an engine in PPC (Partially Premixed Combustion) mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, number concentration and particle size distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest mass concentration of particles (Micro Soot Sensor) were gasoline and methanol followed by ethanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
Technical Paper

Experiments and Simulation of a Six-Cylinder Homogeneous Charge Compression Ignition (HCCI) Engine

2000-10-16
2000-01-2867
A 6-cylinder truck engine was modified to run in HCCI-mode. The aim was to show whether or not it is possible having HCCI run a multi-cylinder engine, to provide brake values of emissions and efficiency and to verify models for engine system simulation. The work proved that it is feasible to use HCCI in multi-cylinder engines with high brake efficiency. Emissions' strong dependence on inlet temperature and octane number was demonstrated. The numerical models simulated the mean effective pressure with high precision, while inlet and exhaust pressures were less accurate, mainly due to the limitations of the turbo maps used.
X