Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Determination of Viscoelastic Core Material Properties Using Sandwich Beam Theory and Modal Experiments

1999-05-17
1999-01-1677
Damping material for automotive structures is often quantified in terms of composite loss factor or damping ratio by using ASTM/SAE beam or modal tests. Simplified expressions have also been used to estimate certain material properties. However, none of these tests provide any information on the properties of viscoelastic core material such as rubber or adhesive in practical structures. To overcome this deficiency, a refined estimation procedure is proposed. A new sandwich beam model has been developed which describes all layers of an arbitrarily applied damping patch. By using both analytical predictions and modal experiments on a cantilever beam, spectrally-varying loss factor and shear modulus of the unknown core are determined.
Technical Paper

Estimation of Dynamic Stiffness Matrix of Welded or Glued Joints Using a Laboratory Fixture

2003-05-05
2003-01-1710
Accurate quantification of welded or adhesive joints in automotive chassis structures is necessary before reliable models can be developed. Such joints undergo shear and rotational deformations, which must be characterized via diagonal stiffness elements and cross-stiffness terms in order to describe static and dynamic problems. In this paper, a frequency domain decomposition technique is employed to extract static stiffness and viscous damping matrices of dimension 2 via analytical, computational or experimental models. Methods are applied to a laboratory fixture and alternate joints are compared.
Technical Paper

Evaluation of Damping Material at Higher Frequencies with Application to Automotive Systems Including Brakes

1995-05-01
951243
Many discrete tonal type noise and vibration problems in automotive systems and other physical structures require passive multi-layer visco-elastic damping treatments in mid to high frequency regimes. To address such issues, experimental modal analysis and dynamic finite element methods are suggested as suitable tools. Results are presented in terms of several test structures (four thin elastic beams, a thick elastic plate and an automotive brake pad) with free-free boundary conditions. Composite modal loss factors are measured and predicted for two different damping insulators consisting of adhesive, steel and coating combinations. Special attention is paid to the elastic deformation modes of test structures and spectral scaling of material properties for the finite element models.
X