Refine Your Search

Topic

Search Results

Standard

Aerospace Systems Electrical Bonding and Grounding for Electromagnetic Compatibility and Safety

2023-02-10
WIP
ARP1870B
This document establishes the minimum requirements for the electrical bonding and grounding of electric, avionic, armament, communication, and electronic equipment installations for aeronautical and aerospace applications. The bonding and grounding requirements specified herein are to ensure that an adequate low resistance return path for electric, avionic, armament, communication and electronic equipment is achieved which can withstand operating conditions and corrosion. This is essential for the reduction of coupling of electromagnetic fields into or out of the equipment as well as for providing electrical stability to control the currents and/or voltages caused by static charges and discharges and for suppressing the hazardous effects thereof.
Standard

CAPACITOR, 10 MFD FOR EMI MEASUREMENTS

1968-05-01
HISTORICAL
ARP936
This recommended practice describes the requirements of a special purpose 10 mfd feed through capacitor to be used in series with the power line to an electrical or electronic device during EMI tests.
Standard

Cabling Guidelines for Electromagnetic Compatibility

2009-11-22
CURRENT
AIR1394A
These cable practice recommendations tend toward design guidance rather than standardization. EMC achievement tests can be standardized, but the means for achievement should not be constrained. The material can best be described as an essay on cabling, and the theme is that a cable is just a part of a complete circuit, the interconnect circuit. Cable EMC performance is thus determined largely by circuit design; it is unrealistic to expect cabling techniques to compensate for improper impedance, symmetry or waveform in the circuit.
Standard

Capacitor, 10 Microfarad for EMI Measurements

2003-02-12
HISTORICAL
ARP936A
This Aerospace Recommended Practice (ARP) describes the requirements of a special purpose 10 μF feed through capacitor to be used in series with the power line to an electrical or electronic device during EMI tests.
Standard

Capacitor, 10 Microfarad for EMI Measurements

2013-03-25
CURRENT
ARP936B
This Aerospace Recommended Practice (ARP) describes the requirements of a special purpose 10 μF feed through capacitor to be used in series with the power line to an electrical or electronic device during EMI tests.
Standard

Corrosion Control and Electrical Conductivity in Enclosure Design

2004-08-18
HISTORICAL
ARP1481A
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance.
Standard

Corrosion Control and Electrical Conductivity in Enclosure Design

2024-02-27
CURRENT
ARP1481B
Corrosion control is always of concern to the designer of electronic enclosures. The use of EMI gaskets to provide shielding often creates requirements that are in conflict with ideal corrosion control. This SAE Aerospace Recommended Practice (ARP) presents a compatibility table (see Figure 1) which has as its objective a listing of metallic couples that are compatible from a corrosion aspect and which still maintain a low contact impedance.
Standard

ELECTROMAGNETIC INTERFERENCE MEASUREMENT ANTENNAS; STANDARD CALIBRATION METHOD

1996-03-01
HISTORICAL
ARP958B
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
Standard

ELECTROMAGNETIC INTERFERENCE MEASUREMENT ANTENNAS; STANDARD CALIBRATION METHOD

1992-11-05
HISTORICAL
ARP958A
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2.
Standard

ELECTROMAGNETIC INTERFERENCE MEASUREMENT ANTENNAS; STANDARD CALIBRATION METHOD

1997-01-01
HISTORICAL
ARP958C
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
Standard

Electromagnetic Compatibility (EMC) System Design Checklist

2013-02-24
HISTORICAL
AIR1221
This checklist is to be used by project personnel to assure that factors required for adequate system electromagnetic compatibility are considered and incorporated into a program. It provides a ready reference of EMC management and documentation requirements for a particular program from preproposal thru acquisition. When considered with individual equipments comprising the system and the electromagnetic operational environment in which the system will operate, the checklist will aid in the preparation of an EMC analysis. The analysis will facilitate the development of system-dependent EMC criteria and detailed system, subsystem, and equipment design requirements ensuring electromagnetic compatibility.
Standard

Electromagnetic Compatibility on Gas Turbine Engines for Aircraft Propulsion

2023-02-20
CURRENT
AIR1423A
The purpose of this AIR is to acquaint the aerospace industry with problems in attaining electromagnetic compatibility on gas turbine engines, particularly as used in aircraft. It is also the purpose of this AIR to present guidelines for the application of EMC controls to the engine, to its components which of necessity must operate in very hostile environments and to its interface with the aircraft.
Standard

Electromagnetic Interference Measurement Antennas; Calibration Method

2021-09-01
CURRENT
ARP958E
This SAE Aerospace Recommended Practice outlines a standardized and economical method for the checkout and calibration of electromagnetic interference measurement antennas. Its application is for use when measuring a source 1 m from the antenna in a shield room. This is the typical distance used in performing military EMC testing. The influence of the shield room on the measured field strength is not considered. This standard does not address the measurement of emissions from an unknown distributed source, yet it attempts to resemble reality by using another antenna, in the calibration method, that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with References 2.1 and 2.2. The purpose of Revision B was to include the calibration of other antennas, such as biconical, horn, monopole and small loop antennas that are also specified for use in these same references.
Standard

Electromagnetic Interference Measurement Antennas; Standard Calibration Method

2003-02-12
HISTORICAL
ARP958D
This SAE Aerospace Recommended Practice (ARP) outlines a standard method for the checkout and calibration of electromagnetic interference measurement antennas. Its primary application is for use when measuring a source 1 m from the antenna in a shield room versus a source at a greater distance (far field). This is the typical distance used in performing military EMC testing. Thus, this is a method of calibration. Shield room characteristics are not considered. It does not address an unknown distributed source. Yet it is close to reality since it is based on another antenna that represents a distributed source. This document presents a technique to determine antenna factors for antennas used primarily in performing measurements in accordance with 2.1 and 2.2. The purpose of Revision B is to include the calibration of other antennas, such as small loop antennas that are also specified for use in these same references.
Standard

Equivalence of Equipment Environmental Qualification Standards for Civil and Military Aircraft Equipment

2021-06-22
CURRENT
AIR6811
This document provides guidance for applying aircraft equipment electromagnetic, electrical, and mechanical qualification standards (i.e., DO-160, MIL-STD-461, MIL-STD-704, and MIL-STD-810) to civil aircraft certification intended for military use and for military aircraft equipment installed on civil aircraft. The guidance identifies where the equipment environmental qualification standards meet the intent of both the civil or military aircraft certification requirements. Conversely, the guidance will identify where the equipment environmental qualification standards have differences that do not meet the intent of the civil or military aircraft certification requirements and when these differences matter based on equipment criticality, installation location, and/or other variables.
X