Refine Your Search

null

Search Results

Viewing 1 to 7 of 7
Technical Paper

Assessment of Dilution Options on a Hydrogen Internal Combustion Engine

2023-08-28
2023-24-0066
The hydrogen internal combustion engine is a promising alternative to fossil fuel-based engines, which, in a short time, can reduce the carbon footprint of the ground transport sector. However, the high heat release rates associated with hydrogen combustion results in higher NOx emissions. The NOx production can be mitigated by diluting the in-cylinder mixture with air, Exhaust Gas Recirculation (EGR) or water injected in the intake manifold. This study aims at assessing these dilution options on the emissions, efficiency, combustion performance and boosting effort. These dilution modes are, at first, compared on a single cylinder engine (SCE) with direct injection of hydrogen in steady state conditions. Air and EGR dilutions are then evaluated on a corresponding 4-cylinder engine by 0D simulation on a complete map under NOx emission constraint.
Technical Paper

Experimental and Numerical Analysis of Diluted Combustion in a Direct Injection CNG Engine Featuring Post- Euro-VI Fuel Consumption Targets

2018-04-03
2018-01-1142
The present paper is concerned with part of the work performed by Renault, IFPEN and Politecnico di Torino within a research project founded by the European Commission. The project has been focused on the development of a dedicated CNG engine featuring a 25% decrease in fuel consumption with respect to an equivalent Diesel engine with the same performance targets. To that end, different technologies were implemented and optimized in the engine, namely, direct injection, variable valve timing, LP EGR with advanced turbocharging, and diluted combustion. With specific reference to diluted combustion, it is rather well established for gasoline engines whereas it still poses several critical issues for CNG ones, mainly due to the lower exhaust temperatures. Moreover, dilution is accompanied by a decrease in the laminar burning speed of the unburned mixture and this generally leads to a detriment in combustion efficiency and stability.
Technical Paper

Experimental and Numerical Investigation on Hydrogen Internal Combustion Engine

2021-09-05
2021-24-0060
Hydrogen may be used to feed a fuel cell or directly an internal combustion engine as an alternative to current fossil fuels. The latter option offers the advantages of already existing hydrocarbon fuel engines - autonomy, pre-existing and proven technology, lifetime, controlled cost, existing industrial tools and short time to market - with a very low carbon footprint and high tolerance to low purity hydrogen. Hydrogen is expected to be relevant for light and heavy duty applications as well as for off road applications, but currently most of research focus on small engine and especially spark ignition engine which is easily adaptable. This guided us to select modern high-efficient gasoline-based engines to start the investigation of hydrogen internal combustion engine development. This study aims to access the properties and limitations of hydrogen combustion on a high-efficiency spark ignited single cylinder engine with the support of the 3D-CFD computation.
Technical Paper

Gas Exchange and Injection Modeling of an Advanced Natural Gas Engine for Heavy Duty Applications

2017-09-04
2017-24-0026
The scope of the work presented in this paper was to apply the latest open source CFD achievements to design a state of the art, direct-injection (DI), heavy-duty, natural gas-fueled engine. Within this context, an initial steady-state analysis of the in-cylinder flow was performed by simulating three different intake ducts geometries, each one with seven different valve lift values, chosen according to an estabilished methodology proposed by AVL. The discharge coefficient (Cd) and the Tumble Ratio (TR) were calculated in each case, and an optimal intake ports geometry configuration was assessed in terms of a compromise between the desired intensity of tumble in the chamber and the satisfaction of an adequate value of Cd. Subsequently, full-cycle, cold-flow simulations were performed for three different engine operating points, in order to evaluate the in-cylinder development of TR and turbulent kinetic energy (TKE) under transient conditions.
Technical Paper

Measurement of Sub-23 nm particles emitted by gasoline direct injection engine with new advanced instrumentation

2019-12-19
2019-01-2195
The research on health effects of soot particles has demonstrated their toxic impact on humans, especially for the smallest ones that can pass through the lungs into the bloodstream and be transferred to other parts of the body. Since the Euro 5b regulation, the total particle number (PN) at the exhaust is limited, but the associated protocol developed by the Particle Measurement Program (PMP) group defined a counting efficiency at the 23 nm cut-off particle diameter to avoid measurement artefacts [1][2]. Recent studies have demonstrated that the last generation Euro 6 engines can emit as many particles in the range 10-23 nm as beyond 23 nm [3]. The SUREAL-23 project (Understanding, Measuring and Regulating Sub-23 nm Particle Emissions from Direct Injection Engines Including Real Driving Conditions), funded by Horizon 2020 EU-program, aims to develop sampling, conditioning and measuring instruments and associated methodologies to extend the existing protocol down to at least 10 nm.
Technical Paper

Numerical and Experimental Analysis of Mixture Formation and Performance in a Direct Injection CNG Engine

2012-04-16
2012-01-0401
This paper presents the results of part of the research activity carried out by the Politecnico di Torino and AVL List GmbH as part of the European Community InGAS Collaborative Project. The work was aimed at developing a combustion system for a mono-fuel turbocharged CNG engine, with specific focus on performance, fuel economy and emissions. A numerical and experimental analysis of the jet development and mixture formation in an optically accessible, single cylinder engine is presented in the paper. The experimental investigations were performed at the AVL laboratories by means of the planar laser-induced fluorescence technique, and revealed a cycle-to-cycle jet shape variability that depended, amongst others, on the injector characteristics and in-cylinder backpressure. Moreover, the mixing mechanism had to be optimized over a wide range of operating conditions, under both stratified lean and homogeneous stoichiometric modes.
Technical Paper

Turbocharging system selection for a hydrogen-fuelled spark-ignition internal combustion engine for heavy-duty applications

2024-07-02
2024-01-3019
Nowadays, green hydrogen can play a crucial role in a successful clean energy transition, thus reaching net zero emissions in the transport sector. Moreover, hydrogen exploitation in internal combustion engines is favoured by its suitable combustion properties and quasi-zero harmful emissions. High flame speeds enable a lean combustion approach, which provides high efficiency and reduces NOx emissions. However, high air flow rates are required to achieve the load levels typical of heavy-duty applications. In this framework, the present study aims to investigate the required boosting system of a 6-cylinder, 13-liter heavy-duty spark ignition engine through 1D numerical simulation. A comparison among various architectures of the turbocharging system and the size of each component is presented, thus highlighting limitations and potentialities of each architecture and providing important insights for the selection of the best turbocharging system.
X