Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Investigation of Fuel Enrichment in the Pre-Chamber on the Ignition of the Main Chamber Charge

2021-04-06
2021-01-0523
Pre-chamber combustion (PCC) engines allow extending the lean limit of operation compared to common SI engines, thus being a candidate concept for the future clean transportation targets. To understand the fundamental mechanisms of the main chamber charge ignition in PCC engines, the effects of the composition in the pre-chamber were investigated numerically. A well-stirred reactor combustion model coupled with a methane oxidation mechanism reduced from GRI 3.0 was used. An open-cycle simulation was run with initialization at exhaust valve opening (EVO). For posterior simulations, the initial flow field was attained by mapping the field variables obtained from the full cycle simulation. The entire simulation domain (pre-chamber and main chamber) global excess air ratio (λ) was set to 1.3.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
Technical Paper

A Novel Model for Computing the Trapping Efficiency and Residual Gas Fraction Validated with an Innovative Technique for Measuring the Trapping Efficiency

2008-09-09
2008-32-0003
The paper describes a novel method for calculating the residual gas fraction and the trapping efficiency in a 2 stroke engine. Assuming one dimensional compressible flow through the inlet and exhaust ports, the method estimates the instantaneous mass flowing in and out from the combustion chamber; later the residual gas fraction and trapping efficiency are estimated combining together the perfect displacement and perfect mixing scavenging models. It is assumed that when the intake port opens, the fresh mixture is pushing out the burned charge without any mixing and after a multiple of the time needed for the largest eddy to perform one rotation, the two gasses are instantly mixed up together and expelled. The result is a very simple algorithm that does not require much computational time and is able to estimate with high level of precision the trapping efficiency and the residual gas fraction in 2 stroke engines.
Technical Paper

A Numerical Study on the Ignition of Lean CH4/Air Mixture by a Pre-Chamber-Initiated Turbulent Jet

2020-04-14
2020-01-0820
To provide insights into the fundamental characteristics of pre-chamber combustion engines, the ignition of lean premixed CH4/air due to hot gas jets initiated by a passive narrow throated pre-chamber in a heavy-duty engine was studied computationally. A twelve-hole pre-chamber geometry was investigated using CONVERGETM software. The numerical model was validated against the experimental results. To elucidate the main-chamber ignition mechanism, the spark plug location and spark timing were varied, resulting in different pressure gradient during turbulent jet formation. Different ignition mechanisms were observed for turbulent jet ignition of lean premixed CH4/air, based on the geometry effect. Ignition behavior was classified into the flame and jet ignition depending on the significant presence of hot active radicals. The jet ignition, mainly due to hot product gases was found to be advanced by the addition of a small concentration of radicals.
Technical Paper

A Path towards High Efficiency Using Argon in an HCCI Engine

2019-04-02
2019-01-0951
Argon replacing Nitrogen has been examined as a novel engine cycle reaching higher efficiency. Experiments were carried out under Homogeneous Charge Compression Ignition (HCCI) conditions using a single cylinder variable compression ratio Cooperative Fuel Research (CFR) engine. Isooctane has been used as the fuel for this study. All the parameters were kept fixed but the compression ratio to make the combustion phasing constant. Typical engine outputs and emissions were compared to conventional cycles with both air and synthetic air. It has been found that the compression ratio of the engine must be significantly reduced while using Argon due to its higher specific heat ratio. The resulting in-cylinder pressure was lower but combustion remains aggressive. However, greater in-cylinder temperatures were reached. To an end, Argon allows gains in fuel efficiency, in unburned hydrocarbon and carbon monoxide, as well as in indicated efficiency.
Technical Paper

A Real Time NOx Model for Conventional and Partially Premixed Diesel Combustion

2006-04-03
2006-01-0195
In this paper a fast NOx model is presented which can be used for engine optimization, aftertreatment control or virtual mapping. A cylinder pressure trace is required as input data. High calculation speed is obtained by using table interpolation to calculate equilibrium temperatures and species concentrations. Test data from a single-cylinder engine and from a complete six-cylinder engine have been used for calibration and validation of the model. The model produces results of good agreement with emission measurements using approximately 50 combustion product zones and a calculation time of one second per engine cycle. Different compression ratios, EGR rates, injection timing, inlet pressures etc. were used in the validation tests.
Technical Paper

A Simulation Study to Understand the Efficiency Analysis of Multiple Injectors for the Double Compression Expansion Engine (DCEE) Concept

2021-04-06
2021-01-0444
Heavy-duty vehicles face increasing demands of emission regulations. Reduced carbon-dioxide (CO2) emission targets motivate decreased fuel consumption for fossil fuel engines. Increased engine efficiency contributes to lower fuel consumption and can be achieved by lower heat transfer, friction and exhaust losses. The double compression expansion engine (DCEE) concept achieves higher efficiency, as it utilizes a split-cycle approach to increase the in-cylinder pressure and recover the normally wasted exhaust energy. However, the DCEE concept suffers heat losses from the high-pressure approach. This study utilizes up to three injectors to reduce the wall-gas temperature gradient rendering lower convective heat losses. The injector configuration consists of a standard central injector and two side-injectors placed at the rim of the bowl. An increased distance from side-injector to the wall delivered lower heat losses by centralizing hot gases in the combustion chamber.
Technical Paper

A Study on the Performance and Emissions of HCCI Oxy-Fuel Combustion in a CFR Engine with Recirculated Carbon Dioxide

2020-09-15
2020-01-2065
Stringent emission regulations and the anticipated climate change call for a paradigm shift in the design of the conventional internal combustion engines. One way to combat this problem is oxy-fuel combustion in which the combustion products are mainly water vapor and carbon dioxide. Water vapor can be easily separated by condensation and carbon dioxide is then easily captured and stored. However, many technical challenges are associated with this mode of combustion. There are many challenges facing oxy-fuel combustion before it find its way to commercial production especially for internal combustion engines. One such challenge is the relatively high temperature of the oxy-fuel combustion. A solution to this problem is the recirculation of the generated CO2 to moderate the in-cylinder temperature. Therefore, careful study of the effect of recirculating the CO2 back to combustion chamber is needed before the implementation of such a concept.
Technical Paper

A Turbo Charged Dual Fuel HCCI Engine

2001-05-07
2001-01-1896
A 6-cylinder truck engine is modified for turbo charged dual fuel Homogeneous Charge Compression Ignition (HCCI) engine operation. Two different fuels, ethanol and n-heptane, are used to control the ignition timing. The objective of this study is to demonstrate high load operation of a full size HCCI engine and to discuss some of the typical constraints associated with HCCI operation. This study proves the possibility to achieve high loads, up to 16 bar Brake Mean Effective Pressure (BMEP), and ultra low NOx emissions, using turbo charging and dual fuel. Although the system shows great potential, it is obvious that the lack of inlet air pre heating is a drawback at low loads, where combustion efficiency suffers. At high loads, the low exhaust temperature provides little energy for turbo charging, thus causing pump losses higher than for a comparable diesel engine. Design of turbo charger therefore, is a key issue in order to achieve high loads in combination with high efficiency.
Technical Paper

An Air Hybrid for High Power Absorption and Discharge

2005-05-11
2005-01-2137
An air hybrid is a vehicle with an ICE modified to also work as an air compressor and air motor. The engine is connected to two air reservoirs, normally the atmosphere and a high pressure tank. The main benefit of such a system is the possibility to make use of the kinetic energy of the vehicle otherwise lost when braking. The main difference between the air hybrid developed in this paper and earlier air hybrid concepts is the introduction of a pressure tank that substitutes the atmosphere as supplier of low air pressure. By this modification, a very high torque can be achieved in compressor mode as well as in air motor mode. A model of an air hybrid with two air tanks was created using the engine simulation code GT-Power. The results from the simulations were combined with a driving cycle to estimate the reduction in fuel consumption.
Technical Paper

Analysis of Surrogate Fuels Effect on Ignition Delay and Low Temperature Reaction during Partially Premixed Combustion

2013-04-08
2013-01-0903
Fuel effects on ignition delay and low temperature reactions (LTR) during partially premixed combustion (PPC) were analyzed using Design of Experiments (DoE). The test matrix included seventeen mixtures of n-heptane, isooctane, toluene and ethanol covering a broad range of ignition quality and fuel chemistry. Experiments were performed on a light-duty diesel engine at 8 bar IMEPg, 1500 rpm with a variation in combustion phasing, inlet oxygen concentration and injection pressure. A single injection strategy was used and the start of injection and injection duration were adjusted to achieve the desired load and combustion phasing. The experimental data show that fuels with higher Research Octane Number (RON) values generally produced longer ignition delays. In addition, the alcohol content had significantly stronger effect on ignition delay than the aromatic content.
Technical Paper

Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

2017-10-08
2017-01-2403
In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NOX) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release.
Technical Paper

Analysis of the Effect of Geometry Generated Turbulence on HCCI Combustion by Multi-Zone Modeling

2005-05-11
2005-01-2134
This paper illustrates the applicability of a sequential fluid mechanics, multi-zone chemical kinetics model to analyze HCCI experimental data for two combustion chamber geometries with different levels of turbulence: a low turbulence disc geometry (flat top piston), and a high turbulence square geometry (piston with a square bowl). The model uses a fluid mechanics code to determine temperature histories in the engine as a function of crank angle. These temperature histories are then fed into a chemical kinetic solver, which determines combustion characteristics for a relatively small number of zones (40). The model makes the assumption that there is no direct linking between turbulence and combustion. The multi-zone model yields good results for both the disc and the square geometries. The model makes good predictions of pressure traces and heat release rates.
Technical Paper

Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

2017-03-28
2017-01-0726
Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
Journal Article

Autoignition of Isooctane beyond RON and MON Conditions

2018-04-03
2018-01-1254
The present study experimentally examines the low-temperature autoignition area of isooctane within the in-cylinder pressure-in-cylinder temperature map. Experiments were run with the help of a Cooperative Fuel Research (CFR) engine. The boundaries of this engine were extended so that experiments could be performed outside the domain delimited by research octane number (RON) and motor octane number (MON) traces. Since homogeneous charge compression ignition (HCCI) combustion is governed by kinetics, the rotation speed for all the experiments was set at 600 rpm to allow time for low-temperature heat release (LTHR). All the other parameters (intake pressure, intake temperature, compression ratio, and equivalence ratio) were scanned, such as the occurrence of isooctane combustion. The principal results showed that LTHR for isooctane occurs effortlessly under high intake pressure (1.3 bar) and low intake temperature (25 °C).
Technical Paper

Balancing Cylinder-to-Cylinder Variations in a Multi-Cylinder VCR-HCCI Engine

2004-06-08
2004-01-1897
Combustion initiation in an HCCI engine is dependent of several parameters that are not easily controlled like the temperature and pressure history in the cylinder. So achieving the same ignition condition in all the cylinders in a multi-cylinder engine is difficult. Factors as gas exchange, compression ratio, cylinder cooling, fuel supply, and inlet air temperature can differ from cylinder-to-cylinder. These differences cause both combustion phasing and load variations between the cylinders, which in the end affect the engine performance. Operating range in terms of speed and load is also affected by the cylinder imbalance, since misfiring or too fast combustion in the worst cylinders limits the load. The cylinder-to-cylinder variations are investigated in a multi-cylinder Variable Compression Ratio (VCR) engine, and the effect it has on the engine performance.
Technical Paper

Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

2017-09-04
2017-24-0082
The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis.
Technical Paper

Blending Octane Number of 1-Butanol and Iso-Octane with Low Octane Fuels in HCCI Combustion Mode

2018-09-10
2018-01-1681
Due to their physical and chemical properties, alcohols such as ethanol and methanol when blended with gasoline provide high anti-knock quality and hence efficient engines. However, there are few promising properties of 1-butanol similar to conventional gasoline which make it a favorable choice for internal combustion engines. Previously the author showed that by blending ethanol and methanol with low octane fuels, non-linear increase in the HCCI fuel number occurs in HCCI combustion mode. Very few studies have been conducted on the use of 1-butanol in HCCI combustion mode, therefore for this work, 1-butanol with a RON 96 was selected as the high octane fuel. Three low octane fuels with octane number close to 70 were used as a base fuel. Two of the low octane fuels are Fuels for Advanced Combustion Engines (FACE gasolines), more specifically FACE I and FACE J and also primary reference fuel (PRF 70) were selected.
Journal Article

Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

2016-10-17
2016-01-2298
The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated.
Technical Paper

Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

2017-10-08
2017-01-2256
The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions.
X