Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Effect of Material Microstructure on Scuffing Behavior of Ferrous Alloys

2011-04-12
2011-01-1091
Scuffing is one of the major problems that influence the life cycle and reliability of several auto components, including engine cylinder kits, flywheels, camshafts, crankshafts, and gears. Ferrous casting materials, such as gray cast iron, ductile cast iron and austempered ductile cast iron (ADI) are widely applied in these components due to their self-lubricating characteristics. The purpose of this research is to determine the scuffing behavior of these three types of cast iron materials and compare them with 1050 steel. Rotational ball-on-disc tests were conducted with white mineral oil as the lubricant under variable sliding speeds and loads. The results indicate that the scuffing initiation is due to either crack propagation or plastic deformation. It is found that ADI exhibits the highest scuffing resistance among these materials.
Journal Article

Effect of Surface Roughness and Lubrication on Scuffing for Austempered Ductile Iron (ADI)

2015-04-14
2015-01-0683
This paper describes the scuffing tests performed to understand the effect of surface roughness and lubrication on scuffing behavior for austempered ductile iron (ADI) material. As the scuffing tendency is increased, metal-to-metal interaction between contacting surfaces is increased. Lubrication between sliding surfaces becomes the boundary or mixed lubrication condition. Oil film breakdown leads to scuffing failure with the critical load. Hence, the role of surface roughness and lubrication becomes prominent in scuffing study. There are some studies in which the influence of the surface roughness and lubrication on scuffing was evaluated. However, no comprehensive scuffing study has been found in the literature regarding the effect of surface roughness and lubrication on scuffing behavior of ADI material. The current research took into account the inferences of surface roughness and lubrication on scuffing for ADI.
Technical Paper

Robust Optimization of Engine Lubrication System

2007-04-16
2007-01-1568
The quality of engine lubrication depends upon how much oil is supplied and how the lubricant is pressurized to the lubricated components. These variables strongly affect the safe operation and lifespan of an engine. During the conceptual design stage of an engine, its lubrication system cannot be verified experimentally. It is highly desirable for design engineers to utilize computer simulations and robust design methodology in order to achieve their goal of optimizing the engine lubrication system. The heuristic design principle is a relatively routine resource for design engineers to pursue although it is time consuming and sacrifices valuable developing time. This paper introduces an unusual design methodology in which design engineers were involved in analyzing their own designs along with lubrication system analyst to establish a link between two sophisticated software packages.
Journal Article

Scuffing Behavior of 4140 Alloy Steel and Ductile Cast Iron

2012-04-16
2012-01-0189
Scuffing is a failure mechanism which can occur in various engineering components, such as engine cylinder kits, gears and cam/followers. In this research, the scuffing behavior of 4140 steel and ductile iron was investigated and compared through ball-on-disk scuffing tests. A step load of 22.2 N every two minutes was applied with a light mineral oil as lubricant to determine the scuffing load. Both materials were heat treated to various hardness and tests were conducted to compare the scuffing behavior of the materials when the tempered hardness of each material was the same. Ductile iron was found to have a consistently high scuffing resistance before tempering and at tempering temperatures lower than 427°C (HRC ≻45). Above 427°C the scuffing resistance decreases. 4140 steel was found to have low scuffing resistance at low tempering temperatures, but as the tempering temperature increases, the scuffing resistance increased.
Journal Article

Tribological Performance of ZnO-Oil Nanofluids at Elevated Temperatures

2013-04-08
2013-01-1219
The tribological performance of nanofluids consisting of ZnO nanoparticles dispersed with a stabilizer in an API Group III oil was investigated. Recent research suggests that these fluids may reduce friction and wear compared to the base oil when used as a lubricant in metal-on-metal tests. The effects of nanoparticle concentration and test temperature on friction and wear were studied. Tests were run at 50°C and 100°C to investigate the viability of the fluids at elevated temperatures because possible applications include use as engine lubricants. Nanofluids showed friction reduction of up to 5.2% and reduced wear by up to 82.8% versus oil with only stabilizer at the highest ZnO concentration and the lowest temperature. Stabilizer increased wear at every concentration, but did not affect friction significantly. Fluid viscosity was also investigated. At 30°C, significant shear-thinning behavior was observed for the 2% ZnO solution, and a viscosity versus shear rate curve was found.
X