Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 12929
Student

2024-05-20
Technical Paper

135 Days in Isolation and Confinement: The Hubes Simulation

1995-07-01
951512
The EUROMIR-95 flight was selected as model for the HUBES experiment: a similar duration (135 days), a similar crew (3 men), similar schedule organisation (8 hours work, 8 hours sleep, 8 hours off-duties), similar workload for the crew and the mission control (performance of scientific experiments), similar setup for communication and data processing, and similar layout of the MIR station, as the simulation was performed in the MIR simulator located at the Institute for BioMedical Problems (IBMP) in Moscow. The Scientific Programme of HUBES had been elaborated by integration of 31 experiments from more than 80 research proposals from Principal Investigators from Europe, USA and Russia, in domains of Physiology, Psychology, Operations and Technology.
Technical Paper

145 - 210 Horsepower Agricultural Tractor Noise Reduction Program

1993-09-01
932434
This paper summarizes the techniques and guidelines which were used to reduce the driver perceived noise level of a 145-210 HP series of agricultural tractors. Graphs of case study test results and comments on subjective noise quality are provided to guide the acoustic novice through the complexities of the vehicle sound environment in a methodical problem solving format.
Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

2004-03-08
2004-01-0333
Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Journal Article

2-Drive Motor Control Unit for Electric Power Steering

2017-03-28
2017-01-1485
The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
Technical Paper

200hp Class Tractor from Concept to Contractor

1974-02-01
740664
This paper describes the design concept and characteristics created to develop a new 200 hp class crawler tractor and the subsequent test to assume the achievement of objectives. The new tractor provides a stable platform for good control of the dozer blade and ripper, a main frame for independent mounting of the hydraulically controlled power train and superstructure components, easy servicing of power train components, integration of the ROPS with the chassis, and a 210 hp engine at 2100 rpm.
Book

2016 Mobility Engineering Professionals Salary Survey

2016-07-14
EXCLUSIVE MEMBER BENEFIT: 2016 MOBILITY ENGINEERING PROFESSIONAL SALARY SURVEY AND CALCULATOR Gain better insight into compensation practices: this salary survey is the only study its kind to explore levels and changes in compensation and employment for engineers and technical employees in the automotive, aerospace, and commercial vehicle industries. It benchmarks compensation levels based by geography, education, industry sector, experience, and managerial and budgetary responsibility. The full report is available to SAE International members by signing into your My SAE account and downloading it into your My Library area. Members also have full access to the updated online interactive salary calculator by visiting SAE’s website. Become a member of SAE International to access this exclusive benefit for free, or purchase it today. YOU BELONG HERE. Membership helps you succeed both personally and professionally. Join us today.
Book

2nd AVL International Commercial Powertrain Conference Proceedings (2003)

2003-01-01
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery. These proceedings include 21 papers from four categories of sessions: Setting the Scene; Different Worlds-Different Technologies; Engineering Partnerships and What Next in Development and Production.
Technical Paper

3-D Crash Analysis Using ADAMS

1988-09-01
885076
The dynamics of vehicle front end crash are studied using the ADAMS dynamic simulation code. The analysis is carried out in three dimensions and can capture the behavior associated with an asymmetrical structure or impact mode. Subroutines which allow the modeling of structural crush and plastic hinge formation, contact forces and friction forces are discussed. The method is relatively inexpensive, but does require a good understanding of the problem on the part of the analyst. A discussion of the techniques that are used to model the structural system is given. The results of the analysis are compared with experimental data and the correlation is very encouraging.
Technical Paper

3-Dimensional Simulation of Vehicle Response to Tire Blow-outs

1998-02-23
980221
Sudden tire deflation, or blow-out, is sometimes cited as the cause of a crash. Safety researchers have previously attempted to study the loss of vehicle control resulting from a blow-out with some success using computer simulation. However, the simplified models used in these studies did little to expose the true transient nature of the handling problem created by a blown tire. New developments in vehicle simulation technology have made possible the detailed analysis of transient vehicle behavior during and after a blow-out. This paper presents the results of an experimental blow-out study with a comparison to computer simulations. In the experiments, a vehicle was driven under steady state conditions and a blow-out was induced at the right rear tire. Various driver steering and braking inputs were attempted, and the vehicle response was recorded. These events were then simulated using EDVSM. A comparison between experimental and simulated results is presented.
Technical Paper

3D Aeroacoustics Simulation of a Complete Bus Exhaust System

2012-11-25
2012-36-0632
Health related problems in over populated areas are a major concern and as such, there are specific legislations for noise generated by transport vehicles. In diesel powered commercial vehicles, the source for noise are mainly related to rolling, transmission, aerodynamics and engine. Considering internal combustion engine, three factors can be highlighted as major noise source: combustion, mechanical and tailpipe. The tailpipe noise is considered as the noise radiated from the open terminations of intake and exhaust systems, caused by both pressure pulses propagating to the open ends of the duct systems, and by vortex shedding as the burst leaves the tailpipe (flow generated noise). In order to reduce noise generated by vehicles, it is important to investigate the gas interactions and what can be improved in exhaust line design during the product development phase.
Technical Paper

3D Deformation and Dynamics of the Human Cadaver Abdomen under Seatbelt Loading

2008-11-03
2008-22-0011
According to accident analysis, submarining is responsible for most of the frontal car crash AIS 3+ abdominal injuries sustained by restrained occupants. Submarining is characterized by an initial position of the lap belt on the iliac spine. During the crash, the pelvis slips under the lap belt which loads the abdomen. The order of magnitude of the abdominal deflection rate was reported by Uriot to be approximately 4 m/s. In addition, the use of active restraint devices such as pretensioners in recent cars lead to the need for the investigation of Out-Of-Position injuries. OOP is defined by an initial position of the lap belt on the abdomen instead of the pelvis resulting in a direct loading of the abdomen during pretensioning and the crash. In that case, the penetration speed of the belt into the abdomen was reported by Trosseille to be approximately 8 to 12 m/s. The aim of this study was to characterize the response of the human abdomen in submarining and OOP.
Technical Paper

3D PIV in Wind Tunnel Applications: Measurements of a Truck Wake

1999-10-19
1999-01-5600
Three-component Particle Image Velocimetry (3D PIV) is a fluid velocity measurement technique that has evolved from the laboratory to become a method appropriate for use in large-scale wind tunnel testing. An example application of 3D PIV in a wind tunnel test is described. The PIV technique was applied to characterize the wake of The Ground Transportation System (GTS) model developed for the Department of Energy (DOE) Heavy Vehicle Drag Reduction (HVDR) program. The test was performed in the Ames/Army 7×10 foot wind tunnel. The objective of the PIV measurements was to validate the HVDR computational fluid dynamics code. The PIV method and PIV system are described. Sample truck wake data with and without boattail attachments are shown. 3D PIV system successfully captured the effects of the boattails on the truck wake.
Technical Paper

3D Simulation of Soot Loading and Regeneration of Diesel Particulate Filter Systems

2007-04-16
2007-01-1143
A novel CFD simulation technique has been developed that unites realistic three-dimensional resolution of diesel particulate filter systems with computational efficiency. Three-dimensional resolution of the thermofluiddynamic behaviour during transient soot loading and regeneration is necessary for the optimization of the function, durability, weight and cost of DPF systems. Computational efficiency is required to allow its use as a standard development tool during all engineering phases and to allow the simulation of driving cycles. The detailed conclusions that can be drawn about soot distribution and thermal characteristics during the regeneration assist in ensuring the DPF function and avoiding DPF failures over the operational lifetime.
Book

3rd AVL International Commercial Powertrain Conference Proceedings (2005)

2005-01-01
The AVL International Commercial Powertrain Conference is the premier forum for truck, agricultural and construction equipment manufacturers to discuss powertrain technology challenges and solutions across their industries. The topics of the conference, which happens every two years, cover all five elements of a modern powertrain: engine, transmission, electric motor, battery and the electronic control which are used basically the same way in the quest for optimal efficiency and environmental compatibility. This event offers a unique opportunity for highly regarded professionals to address the synergy effects and distinctive characteristics of commercial vehicles, agricultural tractors and non-road vehicles, and industrial machinery.
Journal Article

4 L Light Duty LPG Engine Evaluated for Heavy Duty Application

2010-05-05
2010-01-1463
Many applications of liquefied petroleum gas (LPG) to commercial vehicles have used their corresponding diesel engine counterparts for their basic architecture. Here a review is made of the application to commercial vehicle operation of a robust 4 L, light-duty, 6-cylinder in-line engine produced by Ford Australia on a unique long-term production line. Since 2000 it has had a dedicated LPG pick-up truck and cab-chassis variant. A sequence of research programs has focused on optimizing this engine for low carbon dioxide (CO₂) emissions. Best results (from steady state engine maps) suggest reductions in CO₂ emissions of over 30% are possible in New European Drive Cycle (NEDC) light-duty tests compared with the base gasoline engine counterpart. This has been achieved through increasing compression ratio to 12, running lean burn (to λ = 1.6) and careful study (through CFD and bench tests) of the injected LPG-air mixing system.
Technical Paper

4 x 4 Highway Tractor Concepts

1972-02-01
720901
Two new 4 X 4 drivetrain systems have been developed for highway tractors that are used to pull multiple trailer combinations. The first one is a 4 X 2 that automatically becomes a 4 X 4 when conditions exist that require 4 X 4 operation. The second one is a full-time 4 X 4 that proportions the drive torque 36% to the front axle and 64% to the rear axle. A unique front driving steering axle has also been developed that permits a 4 X 4 system to be installed in a standard 4 X 2 truck. There is no need to relocate any major components to make space available for a front driving steering axle.
Journal Article

48V Exhaust Gas Recirculation Pump: Reducing Carbon Dioxide with High-Efficiency Turbochargers without Increasing Engine-Out NOx

2021-08-23
Abstract Regulations limiting GreenHouse Gases (GHG) from Heavy-Duty (HD) commercial vehicles in the United States (US) and European Union will phase in between the 2024 and 2030 model years. These mandates require efficiency improvements at both the engine and vehicle levels, with the most stringent reductions required in the heaviest vehicles used for long-haul applications. At the same time, a 90% reduction in oxides of nitrogen (NOx) will be required as part of new regulations from the California Air Resources Board. Any technologies applied to improve engine efficiency must therefore not come at the expense of increased NOx emissions. Research into advanced engine architectures and components has identified improved turbomachine efficiency as one of the largest potential contributors to engine efficiency improvement. However this comes at the cost of a reduced capability to drive high-pressure Exhaust Gas Recirculation (EGR).
Technical Paper

4994 Tractor Hydraulic System

1984-09-01
841100
J I Case Company has produced four-wheel-drive agricultural tractors since 1964. In 1984 however, the flagship of the Case fleet changed hands. Rising labor costs and larger farming operations spearheaded the need for a more efficient larger tractor. January 1984 marked the introduction of the largest four-wheel-drive tractor in the history of Case, the 4994, a 400-gross engine horsepower tractor, Figure 1. Sheer horsepower alone however, would not meet the requirements of today's farming operations. Case Engineering realized that tomorrows tractors must have sufficient power to handle the wide variety of attachments available. They also realized that along with the unmatched power must come precise control of the attachment. These advancements in farming have required improvements to the tractor hydraulic system. This paper describes the hydraulic system of the 4994, Case's new flagship.
X