Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 19775
Technical Paper

"Nickel electroformed" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0272
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. While rapid prototyping techniques are employed to make prototype tools, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP and RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured by combining Stereolithography (SL), RP technique, with nickel electroforming process. The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called Accurate Clear Epoxy Solid (ACES).
Technical Paper

"Quick" tools development through stereolithography (SLA) for sheet metal forming~An evaluation study

2000-06-12
2000-05-0270
Currently, advancements in Rapid Prototyping (RP) technologies have led to considerable amount of research activities and has been playing a major role in the area of tooling development for which Rapid Tooling (RT) term was coined. Rapid prototyping techniques are employed to make prototype tools. While, the basic idea of the rapid tooling is to produce prototype and zero series parts by using prototype tools so the parts truly represent the future production. This paper will present an evaluation of a RP & RT technique in developing tools (punch and dies) for sheet metal forming, which had been manufactured and tested. Both punch and die have been manufactured directly from Stereolithography (SL). The stereolithography technique that had been utilized in developing models for the tools had been built with modeling pattern called QuickCast infiltrated with Aluminum-Filled Epoxy, designated as Quick Tool.
Technical Paper

(Paint) Film Finishing in Practice

1992-02-01
920732
(Paint) film as an alternative to spray applied paint has received growing attention in recent years. The potential for economic and environmental advantage and quality enhancement with this technology has been reported in several technical papers (Ref. 1, 3 and 4). The actual practice of film finishing, however, has received only limited notice. Film finishes have been applied to aluminum, stainless steel, PVC, and ABS. Starting in 1982, part applications include: wheel covers, door edge guards, window surrounds, roof drip moldings, lower windshield moldings, rocker panels, body side moldings, B pillars, and A pillars. Industry awareness and acceptance of film finishing as a viable alternative to spray applied paint is increasing. The two technologies are similar in many ways, yet distinctly different in other ways. They share a common goal: To yield a durable finish, economically and with superior visual impact. This paper reviews the unique aspects of film finishing.
Technical Paper

1.2GPa Advanced High Strength Steel with High Formability

2014-04-01
2014-01-0991
To reduce the Body in White (BIW) mass, it is necessary to expand the application of Advanced High-Strength Steels (AHSS) to complex shaped parts. In order to apply AHSS to complex shaped parts with thinner gauge, high formability steel is required. However, higher strength steels tend to display lower elongations, compared with low/medium strength steels. Current AHSS are applied to limited parts for this reason. The new 1.2GPa material, with high formability, was developed to solve this issue. The mechanical property targets for the high elongation 1.2GPa material were achieved by precise metallurgical optimization. Many material aspects were studied, such as formability, weldabilty, impact strength, and delayed fracture. As the result of this development, 1.2GPa AHSS has been applied to a new vehicle launched in 2013.The application of this material was the 1st in the world, and achieved a 11kg mass reduction.
Technical Paper

1983 Ford Ranger Truck HSLA Steel Wheel

1982-02-01
820019
The demand for improved fuel economy in both cars and trucks has emphasized the need for lighter weight components. The application of high strength steel to wheels, both rim and disc, represents a significant opportunity for the automotive industry. This paper discusses the Ranger HSLA wheel program that achieved a 9.7 lbs. per vehicle weight savings relative to a plain carbon steel wheel of the same design. It describes the Ranger wheel specifications, the material selection, the metallurgical considerations of applying HSLA to wheels, and HSLA arc and flash butt welding. The Ranger wheel design and the development of the manufacturing process is discussed, including design modifications to accommodate the lighter gage. The results demonstrate that wheels can be successfully manufactured from low sulfur 60XK HSLA steel in a conventional high volume process (stamped disc and rolled rim) to meet all wheel performance requirements and achieve a significant weight reduction.
Technical Paper

1984 Continental Mark VII/Lincoln Continental Electronically-Controlled Air Suspension (EAS) System

1984-02-01
840342
This paper describes the Electronic Air Suspension (EAS) System developed by Ford Motor Company. Design trade-offs between load-carrying capacity necessary with conventional steel spring suspension systems and riding comfort are avoided when today's microcomputer technology is combined with a leveling air spring suspension. An electric air compressor with regenerative air dryer, three electronic “Hall Effect” height sensors, four air springs with integral solenoids, and a control module with a single chip microcomputer are the key EAS System components discussed.
Technical Paper

2-D Springback Analysis for Stretch-Bending Processes Based on Total Strain Theory

1995-02-01
950691
A theoretical model is presented for predicting springback of wide sheet metal subjected to 2D-stretch-bending operation. The material is assumed to be normal anisotropic with n-th power hardening law, σ = Fεn. Two types of stretch-bending experiment, bending with simultaneous stretching and stretch-bending followed by consecutive re-stretching, is conducted using AK sheet steel and sheet aluminum alloy A5182-O. The measured values of springback are in good agreement with analytical ones for a wide range of bending radii, stretching forces, and loading conditions. Furthermore, a calculation method for predicting springback configurations of 2D sheet metal parts with arbitrary cross-sections which include both stretch-bending and stretch-bending-unbending deformation is proposed.
Technical Paper

2004 Nissan 3.5L Cam Cover Material Study: Aluminum, Magnesium and Composite

2005-04-11
2005-01-0727
The present study compares the NVH performance of three different materials used on cam covers in automobiles, Aluminum (Al), Magnesium (Mg) and Thermoplastic (TP). The cam cover design used for this comparison was the 2004 Nissan Maxima 3.5L production cam cover which is made of a thermoplastic (TP). The Al and Mg covers for this study were created by sandcast, due to time constraints, via laser scanning techniques using the 2004 Nissan Maxima 3.5L production thermoplastic cover design. Note that sand-cast covers generally provide a less quiet sound field than the standard casting method. The Nissan production cover comes with a production baffle made of a similar material as the cover. Testing was conducted with and without the production baffle for all covers. The study was conducted for the production boundary condition of a non-isolated cover and a Freudenberg-NOK (FNGP) partially isolated cover. Isolated bolt assemblies using elastomeric grommets were used to isolate the cover.
Technical Paper

2005 Ford GT Magnesium Instrument Panel Cross Car Beam

2005-04-11
2005-01-0341
Ford GT 2005 vehicle was designed for performance, timing, cost, and styling to preserve Ford GT40 vintage look. In this vehicle program, many advanced manufacturing processes and light materials were deployed including aluminum and magnesium. This paper briefly explains one unique design concept for a Ford GT instrument panel comprised of a structural magnesium cross-car beam and other components, i.e. radio box and console top, which is believed to be the industry's first structural I/P from vehicle crash load and path perspectives. The magnesium I/P design criteria include magnesium casting properties, cost, corrosion protection, crashworthiness assessments, noise vibration harshness performance, and durability. Magnesium die casting requirements include high pressure die cast process with low casting porosity and sound quality, casting dimensional stability, corrosion protection and coating strategy, joining and assembly constraints.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Manufacturing Technology

2005-01-11
2005-01-0470
In October 1999, General Motors contracted Dana Corporation to manufacture an all-aluminum spaceframe for the 2006 Chevrolet Corvette Z06. Corvette introduced its first ever all-aluminum frame (see Figure 1) to the world at the 2005 North American International Auto Show (NAIAS) in Detroit, Michigan. The creation of this spaceframe resulted in a significant mass reduction and was a key enabler for the program to achieve the vehicle level performance results required for a Z06 in an ever-growing market. Dana Corporation leveraged ALCOA's (Aluminum Company of America) proven design capabilities while incorporating new MIG welding, laser welding, Self-Pierce Riveting (SPR), and full spaceframe machining to join General Motors (GM) Metal Fabrication Division's (MFD) hydroformed rails to produce the Corvette Z06's yearly requirement of 7000 units. This paper describes the technologies utilized throughout the assembly line and their effect on the end product.
Technical Paper

21st Century Aircraft Potable Water Systems

1999-10-19
1999-01-5556
Aircraft potable (drinking) water systems haven’t changed significantly in the last half-century. These systems consist of cylindrical water tanks pressurized by bleed air from the jet engines, with insulated stainless steel distribution lines. What has changed recently is the increase in the possibility of aircraft picking up contaminated drinking water at foreign and domestic stops. Customer awareness of these problems has also changed - to the point where having reliable drinking water is now a competitive issue among airlines. Old style potable water systems that are used on modern aircraft are high maintenance and exacerbate the growth of microbes because the water is static much of the time. The integrity of some pressurized water tanks are also a concern after years of use. Cost-effective mechanical and biological solutions exist that can significantly reduce the amount of chemicals added and provide good potable water.
Technical Paper

25 Development of Rapid Composite Plating System for Motorcycle Engine Cylinders

2002-10-29
2002-32-1794
Weight reduction of automobiles is key technology in order to improve fuel economy and driving performance. Concerning of the motorcycle engine, weight reduction is also the fundamental and important technologies. Cylinder is one of the main parts of engine and the wear characteristics of the cylinder liner are largely related to the engine performance. Gray iron liners squeezed in aluminum cylinder block have been widely used. This is due to the excellent resistance to abrasion of gray iron. In order to realize light all aluminum cylinder, the good abrasion resistant method is necessary to develop to be applied with inner surface of liners. We have developed the new Rapid Composite Plating System for the motorcycle engine cylinders. This system made it possible to adopt all aluminum cylinders without cast iron liners to new type of engine.
Technical Paper

32 Development of Silent Chain Drive System for Motorcycles

2002-10-29
2002-32-1801
Examining the noise reduction of a motorcycle, the requirement of an effective method of reducing a drive chain noise has been a pending issue similarly to noise originating from an engine or exhaust system, etc. Through this study, it became clear that the mechanism of chain noise could be classified into two; low frequency noise originated from cordal action according to the degree of chain engagement and high frequency noise generated by impact when a chain roller hits sprocket bottom. An improvement of urethane resin damper shape, mounted on a drive side sprocket, was effective for noise reduction of the former while our development of a chain drive that combined an additional urethane resin roller with an iron roller worked well for the latter. The new chain system that combined this new idea has been proven to be capable of reducing the chain noise to half compared with a conventional system.
Technical Paper

3D Bending of Aluminium Extrusions for Automotive Applications

2003-10-27
2003-01-2855
This paper is concerned with 3D stretch bending of aluminium extrusions. A design method for prediction of dimensional tolerances is presented, focusing on cross-sectional deformations and elastic springback. The model is successfully applied to a complex 3D formed part. Based on the present analysis, it is concluded that the required dimensional tolerances of a product can be determined early in the design phase by use of this method.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Technical Paper

3rd Generation AHSS Virtual and Physical Stamping Evaluation

2020-04-14
2020-01-0757
Developing lightweight, stiff and crash-resistant vehicle body structures requires a balance between part geometry and material properties. High strength materials suitable for crash resistance impose geometry limitations on depth of draw, radii and wall angles that reduce geometric efficiency. The introduction of 3rd generation Advanced High Strength Steels (AHSS) can potentially change the relationship between strength and geometry and enable simultaneous improvements in both. This paper will demonstrate applicability of 3rd generation AHSS with higher strength and ductility to replace the 780 MPa Dual Phase steel in a sill reinforcement on the current Jeep Cherokee. The focus will be on formability, beginning with virtual simulation and continuing through a demonstration run on the current production stamping tools and press.
Technical Paper

42 Volt Architecture on Powder Metallurgy - Opportunities

2003-03-03
2003-01-0443
The 42-Volt electrical system is being introduced in automobiles to provide the extra power needed for various electromagnetic devices. These paper discuses the opportunity offered by the 42Volt for powder metal parts and the challenges. Major opportunities are in motors. A brief discussion of motors and the performance requirements for the magnetic core material used is included. Brushless motor design can benefit the most from insulated iron powder compacts because of the design simplicity of powder metal parts and three dimensional flux capability which is most beneficial in rotating devices.(P/M stands for powder metallurgy and not permanent magnets)
Technical Paper

49 Development of Pb-free Free-Cutting Steel Enabling Omission of Normalizing for Crankshafts

2002-10-29
2002-32-1818
Crankshafts of motorcycles require high strength, high reliability and low manufacturing cost. Recently, a reduction of Pb content in the free-cutting steel, which is harmful substance, is required. In order to satisfy such requirements, we started the development of Pb-free free-cutting steel which simultaneously enabled the omission of the normalizing process. For the omission of normalizing process, we adjusted the content of Carbon, Manganese and Nitrogen of the steel. This developed steel can obtain adequate hardness and fine microstructure by air-cooling after forging. Pb-free free-cutting steel was developed based on Calcium-sulfur free-cutting steel. Pb free-cutting steel is excellent in cutting chips frangibility in lathe process. We thought that it was necessary that cutting chips frangibility of developed steel was equal to Pb free-cutting steel. It was found that cutting chips frangibility depend on a non-metallic inclusion's composition, shape and dispersion.
X