Refine Your Search

Search Results

Standard

BALL JOINTS

1981-10-01
HISTORICAL
J490_198110
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications.
Standard

BALL JOINTS

1996-09-01
HISTORICAL
J490_199609
This SAE Standard covers the general and dimensional data for various types of ball joints with inch threads commonly used on control linkages in automotive, marine, and construction and industrial equipment applications. Inasmuch as the load carrying and wear capabilities of ball joints vary considerably with their design and fabrication, it is suggested that the manufacturers be consulted in regard to these features and for recommendations relating to application of the different types and styles available. The inclusion of dimensional data in this standard is not intended to imply that all the products described are stock production sizes. Consumers are requested to consult with manufacturers concerning availability of stock production parts.
Standard

BALL STUD AND SOCKET ASSEMBLY PERFORMANCE TEST PROCEDURE

1970-08-01
HISTORICAL
J193_197008
The purpose of this test procedure is to provide a uniform method of testing ball stud and socket assemblies to determine their performance characteristics. This procedure is an extension of the dimensional requirements for ball stud assemblies as used in integral assembly. Parts should meet all provisions of this procedure which are applicable to the end use of the socket assembly being tested. All tests, except ball stud yield load, may be run using complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY TEST PROCEDURE

1979-04-01
HISTORICAL
J193A_197904
The purpose of this test procedure is to provide a uniform method of testing ball stud and socket assemblies to determine their functional characteristics. This procedure is an extension of the dimensional recommendations for ball studs as used in integral socket assemblies. All tests, except ball stud yield, may be run using complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY TEST PROCEDURE

1979-04-01
HISTORICAL
J193_197904
The purpose of this test procedure is to provide a uniform method of testing ball stud and socket assemblies to determine their functional characteristics. This procedure is an extension of the dimensional recommendations for ball studs as used in integral socket assemblies. All tests, except ball stud yield, may be run using complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY TEST PROCEDURES

1987-02-01
HISTORICAL
J193_198702
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

BALL STUD AND SOCKET ASSEMBLY—TEST PROCEDURES

1996-06-19
HISTORICAL
J193_199606
The test procedures describe a method to laboratory test suspension and steering system ball stud and/or socket assemblies for functional characteristics. This procedure is an extension of SAE J491b recommended practice on dimensional recommendations for ball studs towards a vehicle application. The tests are conducted either on ball studs individually or on complete integral assemblies representing the application.
Standard

Helical Compression and Extension Spring Terminology

2016-08-02
CURRENT
J1121_201608
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

Helical Compression and Extension Spring Terminology

2006-09-12
HISTORICAL
J1121_200609
The following recommended practice has been developed to assist engineers and designers in the preparation of specifications for the major types of helical compression and extension springs. It is restricted to a concise presentation of items which will promote an adequate understanding between spring manufacturer and spring user of the major practical requirements in the finished spring. Closer tolerances are obtainable where greater accuracy is required and the increased cost is justified. For the basic concepts underlying the spring design and for many of the details, see the SAE Information Report MANUAL ON DESIGN AND APPLICATION OF HELICAL AND SPIRAL SPRINGS, SAE HS 795, which is available from SAE Headquarters in Warrendale, PA 15096. A uniform method for specifying design information is shown in the TYPICAL DESIGN CHECK LISTS FOR HELICAL SPRINGS, SAE J1122.
Standard

LEAD-FREE REPLACEMENT PAINTS

1984-06-01
HISTORICAL
J1437_198406
Current, pending, and potential legal regulations such as the OSHA Final Standard on Occupational Exposure to Lead (Federal Register, Volume 43, No. 220: Tuesday, November 14, 1970) may require changes in the composition and color of paints commonly used in the automotive, truck, agricultural, industrial, and construction equipment industries.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO CUSTOMARY U.S. UNITS

1992-11-01
HISTORICAL
J510_199211
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

LEAF SPRINGS FOR MOTOR VEHICLE SUSPENSION—MADE TO METRIC UNITS

1992-11-01
HISTORICAL
J1123_199211
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs For Motor Vehicle Suspension - Made to Metric Units

2016-04-05
CURRENT
J1123_201604
NOTE—For leaf springs made to customary U.S. units, see SAE J510. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully dealt with in HS-J788.
Standard

Leaf Springs for Motor Vehicle Suspension - Made to Customary U.S. Units

2016-04-05
CURRENT
J510_201604
NOTE—For leaf springs made to metric units, see SAE J1123. This SAE Standard is limited to concise specifications promoting an adequate understanding between spring maker and spring user on all practical requirements in the finished spring. The basic concepts for the spring design and for many of the details have been fully addressed in HS-J788, SAE Information Report, Manual on Design and Application of Leaf Springs, which is available from SAE Headquarters.
Standard

METRIC BALL JOINTS

1991-06-01
HISTORICAL
J2213_199106
This SAE Standard covers the general and dimensional data for industrial quality ball joints commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications.
Standard

METRIC SPHERICAL ROD ENDS

1989-12-01
HISTORICAL
J1259_198912
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in the types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

METRIC SPHERICAL ROD ENDS

1989-06-01
HISTORICAL
J1259_198906
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in the types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

METRIC SPHERICAL ROD ENDS

1980-04-01
HISTORICAL
J1259_198004
This SAE Standard covers the general and dimensional data for industrial quality spherical rod ends commonly used on control linkages in metric automotive, marine, construction, and industrial equipment applications. The rod ends described are available from several manufacturers within the range of the interchangeable specifications. The sliding contact spherical self-aligning bearing members (ball and socket) are available in a variety of materials in types shown. The load capacities and wear capabilities vary considerably with the design and fabrication. It is suggested that the manufacturers be consulted for recommendations for the type and design appropriate to particular applications.
Standard

METRIC YOKE TYPE ROD ENDS

1994-02-01
HISTORICAL
J1651_199402
This SAE Standard provides dimensions, tolerances, material, and heat treatment for yoke type rod ends with metric threads and for use with metric size clevis pins.
X