Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 21478
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1967 Guide to Governmental Assurance Documentation: In the Areas of Quality, Reliability, Maintainability, Value Engineering, Safety, Human Factors, and Zero Defects

1967-02-01
670642
Governmental assurance documentation bibliography updated; new tabulation effective as of April 1, 1967. Latest revision indicated in all instances, but no attempt was made to list supplements or amendments. Department of Defense Index of Specifications and Standards (DODISS) published annually in three parts (alphabetic, numerical, and listing of Federal Supply Classification following unclassified documents.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Technical Paper

4 Stroke Gasoline Engine Performance Optimization Using Statistical Techniques

2001-12-01
2001-01-1800
The engine designer has to find novel methods to optimize the engine efficiency faster as the engine development cycle is getting shortened due to the continuous growing market demands. Engine optimization involves fine tuning of the various engine parameters and conducting a large number of tests on actual engine test bed. In this paper, modern techniques that have been used to optimize a small 4stroke air-cooled engine performance have been described. The engine has been modelled using one-dimensional thermodynamic engine modelling software (AVL-BOOST). Design of experiments (DoE) tools have been used to optimize the engine variables. The input parameters form an orthogonal array of L27 matrix and the out put characteristics of the engine (responses) have been predicted by using BOOST software. This design matrix has been used to study and optimize thirteen factors in three levels (313).
Standard

400 Hz Connection Aircraft Electrical Maintenance Procedures

2008-03-28
HISTORICAL
AIR4365A
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Technical Paper

5-Axis Flex Track System

2012-09-10
2012-01-1859
Flex Track Systems are seeing increased usage in aerospace applications for joining large assemblies, such as fuselage sections. Previous systems were limited to work pieces that allowed the tracks to follow a gentle radius of curvature, limiting the locations where the system could be used. This paper describes a new 5-Axis Flex Track System developed to expand the usage of the systems, allowing them to process work pieces containing complex and irregular contours. Processing complex contours is accomplished through the addition of A and B axes providing normalization in multiple directions. These new systems are configured with the latest multi-function process capabilities allowing drilling, hole quality measurement, and temporary or permanent fastener installation.
Technical Paper

777 Automated Spar Assembly Tool - Second Generation

1995-09-01
952172
The Automated Spar Assembly Tool (ASAT II) at the Everett, Washington, 777 Boeing manufacturing facility could be the largest automated fastening cell in the commercial aircraft industry. Based on the success of the ASAT I, Boeing's 767 spar assembly tool, the 285-foot long ASAT II cell was needed to accurately position and fasten the major spar components (chords and web), then locate and fasten over 100 components (ribposts and stiffeners) to assemble the 777 forward and rear wing spars. From its inception in 1990 to the first drilled hole in January 1993 and through two years of spar production, the more advanced ASAT II has proven to be a greater success than even its 767 ASAT I predecessor. This massive automated fastening system consistently provides accurate hole preparation, inspection, and installation of three fastener types ranging from 3/16 inches to 7/16 inches in diameter.
Technical Paper

777 Wing Fastener Machine Training Simulator

1993-09-01
931761
Wing panels for Boeing's new 777 airplane are assembled using fastening machines called Wing Fastener Systems (WFS). Compared to the wing riveting machines currently used to squeeze rivets for other airplane models, the 777 WFS provides significantly more features in that it also installs two part fasteners, collects process data for Statistical Process Control analysis, plus other functions. Historically, new operators for wing riveting machines have needed six months of on-the-job training to achieve basic qualification. Because of the increased functionality of the 777 WFS, an eight to nine month O.J.T. requirement was anticipated. Training requirements were further compounded by our need for up to thirty qualified operators in a relatively short time frame and a maintenance staff thoroughly trained in the new control architecture. Boeing's response to this challenge was to use simulation methods similar to those used to train pilots for our customer airlines.
Technical Paper

777X Control Surface Assembly Using Advanced Robotic Automation

2017-09-19
2017-01-2092
Fabrication and assembly of the majority of control surfaces for Boeing’s 777X airplane is completed at the Boeing Defense, Space and Security (BDS) site in St. Louis, Missouri. The former 777 airplane has been revamped to compete with affordability goals and contentious markets requiring cost-effective production technologies with high maturity and reliability. With tens of thousands of fasteners per shipset, the tasks of drilling, countersinking, hole inspection, and temporary fastener installation are automated. Additionally and wherever possible, blueprint fasteners are automatically installed. Initial production is supported by four (4) Electroimpact robotic systems embedded into a pulse-line production system requiring strategic processing and safeguarding solutions to manage several key layout, build and product flow constraints.
Technical Paper

A 3-D Joint Model for Automotive Structures

1992-06-01
921088
A simple, design-oriented model of joints in vehicles structures is developed. This model accounts for the flexibility, the offsets of rotation centers of joint branches from geometric center, and the coupling between rotations of a joint branch in different planes. A family of joint models with different levels of complexity is also defined. A probabilistic system identification is used to estimate the joint model parameters by using the measured displacements. Statistical tools which identify important parameters are also presented. The identification methodology is applied to the estimation of parameters of a B-pillar to rocker joint.
Technical Paper

A 360×226 Pixel CMOS Imager Chip Optimized for Automotive Vision Applications

2001-03-05
2001-01-0317
Multiple automotive systems are now being developed which require an imager or vision chip to provide information regarding vehicle surroundings, vehicle performance, and vehicle passenger compartment status. Applications include lane departure, lane tracking, collision avoidance, as well as occupant position, impaired driver, and occupant identification. These applications share many requirements, including robust design, tolerance for the automotive environment, built in self-test, wide dynamic range, and low cost. In addition, each application has unique requirements for resolution, sensitivity, imager aspect ratio, and output format. In many cases, output will go directly to vehicle systems for processing, without ever being displayed to the driver. Commercial imager chips do not address this wide spectrum of requirements. A CMOS imager chip has been designed to address these unique automotive requirements.
Technical Paper

A Backbone in Automotive Software Development Based on XML and ASAM/MSR

2004-03-08
2004-01-0295
The development of future automotive electronic systems requires new concepts in the software architecture, development methodology and information exchange. At Bosch an XML and MSR based technology is applied to achieve a consistent information handling throughout the entire software development process. This approach enables the tool independent exchange of information and documentation between the involved development partners. This paper presents the software architecture, the specification of software components in XML, the process steps, an example and an exchange scenario with an external development partner.
Technical Paper

A Basic Study on Modeling of Forearm Torsional Operations for Digital Human

2008-06-17
2008-01-1903
The purpose of this study is to propose a method to evaluate operations involving forearm torsion, such as screw driving and knob turning, for digital human models. The rotational ranges of an object gripped with a hand and the working postures of the upper limb were measured at various positions of the object. The results demonstrated that the rotational ranges of the object varied depending on the working posture. The degree of coincidence was defined among direction vectors for each segment in the link model consisting of the upper limb and the rotated object. A method was proposed to estimate the rotational ranges of the object from the degree of coincidence. Based on this method, software has been developed in order to evaluate operations involving forearm torsion.
Technical Paper

A CFD Multidimensional Approach to Hydraulic Components Design

2007-10-30
2007-01-4196
This paper presents a multidimensional approach to the hydraulic components design by means of an open-source fluid dynamics code. A preliminary study of a basic geometry was carried out by simulating the efflux of an incompressible fluid through circular pipes. Both laminar and turbulent conditions were analyzed and the influence of the grid resolution and modeling settings were investigated. A qualitative description of the internal flow-field distribution, and a quantitative comparison of pressure and velocity profiles along the pipe axis were used to asses the multidimensional open-source code capabilities. Moreover the results were compared with the experimental measurements available in literature and with the theoretical trends which can be found in well-known literature fundamentals (Hagen-Poiseuille theory and Nikuradse interpolation). Further comparison was performed by using a commercial CFD code.
Technical Paper

A CIRA 3D Ice Accretion Code for Multiple Cloud Conditions Simulations

2023-06-15
2023-01-1461
This work presents the implementation and validation efforts of a 3D ice accretion solver for aeronautical applications, MESS3D, based on the advanced Messinger model. The solver is designed to deal with both liquid phase and ice crystal cloud conditions. In order to extend the Messinger model to 3D applications, an algorithm for the water run-back distribution on the surface was implemented, in place of an air flow stagnation line search algorithm, which is straightforward in 2D applications, but more complicated in 3D. The developed algorithm aims to distribute the run-back water in directions determined by air pressure gradients or shear forces. The data structure chosen for MESS3D allows high flexibility since it can manage the necessary input solutions on surface grids coming from both structured and unstructured solvers, regardless the number of edges per surface cells.
Technical Paper

A Case for RFID in Indian Automotive Industry

2005-10-23
2005-26-301
Radio Frequency Identification (RFID) technology holds great potential for reshaping business strategies. The use of RFID to capitalize on data flow in supply chain could be one of the most significant developments. This paper presents the case for RFID implementation in automotive supply chain. It also gives brief description about RFID technology and its deployment in Ashok Leyland. Steps involved in implementing this technology are also briefed in this paper.
Technical Paper

A Case for Standardization

1974-02-01
741143
This paper outlines several specifications for heavy-duty truck wiring, especially wire and harness assemblies, and low-tension electrical wire. Emphasized are avoidance of substandard wiring and components, identification of circuits, grounding techniques, and construction. It is noted that improved specifications will result in reduced maintenance costs.
X