Refine Your Search

Topic

Author

Affiliation

Search Results

Viewing 1 to 20 of 25629
Journal Article

100 Years of Corrosion Testing—Is It Time to Move beyond the ASTM D130? The Wire Corrosion and Conductive Deposit Tests

2023-09-22
Abstract The ASTM D130 was first issued in 1922 as a tentative standard for the detection of corrosive sulfur in gasoline. A clean copper strip was immersed in a sample of gasoline for three hours at 50°C with any corrosion or discoloration taken to indicate the presence of corrosive sulfur. Since that time, the method has undergone many revisions and has been applied to many petroleum products. Today, the ASTM D130 standard is the leading method used to determine the corrosiveness of various fuels, lubricants, and other hydrocarbon-based solutions to copper. The end-of-test strips are ranked using the ASTM Copper Strip Corrosion Standard Adjunct, a colored reproduction of copper strips characteristic of various degrees of sulfur-induced tarnish and corrosion, first introduced in 1954. This pragmatic approach to assessing potential corrosion concerns with copper hardware has served various industries well for a century.
Technical Paper

175°C-Capable Thermoplastic Elastomers for Automotive Air Management and Sealing Applications

2007-11-28
2007-01-2576
Flexibility, oil resistance, and the need for heat resistance to 150°C-plus temperatures have traditionally limited automotive design engineers to two options - thermoset rubber or heat-shielding conventional thermoplastic elastomers (TPE). Both of these options present limitations in part design, the ability to consolidate the number of components in a part of assembly, and on total cost. This paper presents a class of high-performance, flexible thermoplastic elastomers based on dynamically vulcanized polyacrylate (ACM) elastomer dispersed in a continuous matrix of polyamide (PA) thermoplastic. These materials are capable of sustained heat resistance to 150°C and short-term heat resistance to 175°C, without requiring heat shielding. Recent advancements in blow molding and functional testing of the PA//ACM TPEs for automotive air management (ducts) and underhood sealing applications will be shown.
Technical Paper

1985 Body Corrosion Field Survey - 5 and 6 Year Old Vehicles

1986-12-08
862025
The Body Division of the Automotive Corrosion and Prevention Committee of SAE (ACAP) concluded that an automotive body corrosion survey for public consumption was needed. The committee proceeded to develop a survey methodology and conducted an initial survey in the Detroit area. Similar surveys can be conducted at regular biyearly intervals for comparison to track the results of industry wide improvements in corrosion protection. Over two hundred 1980 and 1981 model year vehicles were surveyed covering a wide range of domestic models and some foreign models. Twenty six panel or partial panel categories were developed and evaluated for a closed car parking lot survey. Each panel was checked for perforation, blistering and surface rust.
Technical Paper

1D Fluid Dynamic Modeling of Unsteady Reacting Flows in the Exhaust System with Catalytic Converter for S.I. Engines

2000-03-06
2000-01-0210
This paper deals with some recent advances in the field of 1D fluid dynamic modeling of unsteady reacting flows in complex s.i. engine pipe-systems, involving a catalytic converter. In particular, a numerical simulation code has been developed to allow the simulation of chemical reactions occurring in the catalyst, in order to predict the chemical specie concentration in the exhaust gas from the cylinder to the tailpipe outlet, passing through the catalytic converter. The composition of the exhaust gas, discharged by the cylinder and then flowing towards the converter, is calculated by means of a thermodynamic two-zone combustion model, including emission sub-models. The catalytic converter can be simulated by means of a 1D fluid dynamic and chemical approach, considering the laminar flow in each tiny channel of the substrate.
Technical Paper

1D Model of a Copper Exchanged Small Pore Zeolite Catalyst Based on Transient SCR Protocol

2013-04-08
2013-01-1578
Urea-selective catalytic reduction (SCR) catalysts are the leading aftertreatment technology for diesel engines, but there are major challenges associated with meeting future NOx emission standards, especially under transient drive cycle conditions that include large swings in exhaust temperatures. Here we present a simplified, transient, one-dimensional integral model of NOx reduction by NH₃ on a commercial small-pore Cu-zeolite urea-SCR catalyst for which detailed kinetic parameters have not been published. The model was developed and validated using data acquired from bench reactor experiments on a monolith core, following a transient SCR reactor protocol. The protocol incorporates NH₃ storage, NH₃ oxidation, NO oxidation and three global SCR reactions under isothermal conditions, at three space velocities and at three NH₃/NOx ratios.
Technical Paper

1D Unsteady Flows with Chemical Reactions in the Exhaust Duct-System of S.I. Engines: Predictions and Experiments

2001-03-05
2001-01-0939
This paper describes some recent advances of the research work concerning the 1D fluid dynamic modeling of unsteady reacting flows in s.i. engine pipe-systems, including pre-catalysts and main catalysts. The numerical model GASDYN developed in previous work has been further enhanced to enable the simulation of the catalyst. The main chemical reactions occurring in the wash-coat have been accounted in the model, considering the mass transfer between gas and solid phase. The oxidation of CO, C3H6, C3H8, H2 and reduction of NO, the steam-reforming reactions of C3H6, C3H8, the water-gas shift reaction of CO have been considered. Moreover, an oxygen-storage sub-model has been introduced, to account for the behavior of Cerium oxides. A detailed thermal model of the converter takes into account the heat released by the exothermic reactions as a source term in the heat transfer equations. The influence of the insulating mat is accounted.
Technical Paper

2-Stage Torque Converter and Double Clutch

1952-01-01
520220
THE development of the two-stage torque converter with automatic double clutch is presented here. The author covers particularly the substitution of casting for fabrication for several of the units in the transmission.
Technical Paper

2005 Fuel Cell Vehicle and its Magnesium Power Distribution Unit

2005-04-11
2005-01-0339
The High Voltage Power Distribution Unit (PDU) is constructed of magnesium in support of Fuel Cell Electric Vehicle (FCEV) weight reduction efforts. The PDU distributes and controls a nominal 75 kilowatts of power generated by the Fuel Cell, the primary source of High Voltage power, to all the vehicle loads and accessories. The constraints imposed on the design of the PDU resulted in a component highly susceptible to general and galvanic corrosion. Corrosion abatement was the focus of the PDU redesign. This paper describes the redesign efforts undertaken by Ford personnel to improve the part robustness and corrosion resistance.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe

2005-04-11
2005-01-0465
This paper describes the engineering, manufacturing and integration necessary to produce the Corvette's first ever all-aluminum spaceframe (see Figure 1). The engineering and manufacturing of the spaceframe was a joint venture between General Motors and suppliers ALCOA (Aluminum Company of America) and Dana Corporation. ALCOA led the initial design of the spaceframe; Dana Corp led the manufacturing; General Motors' Engineering and Manufacturing groups led the integration of the assembly. The aluminum spaceframe design is modeled after the baseline steel structure of the Corvette coupe. The aluminum spaceframe reduces 140 lbs from the steel baseline and enters the plant at 285 lbs. This frame allows the 2006 Corvette Z06 to enter the market at a 3100 lbs curb weight. Aluminum casting, extruding, stamping, hydroforming, laser welding, Metal Inert Gas (MIG) welding, Self Pierce Riveting (SPR), and full spaceframe machining make up the main technologies used to produce this spaceframe.
Technical Paper

2006 Chevrolet Corvette Z06 Aluminum Spaceframe Design and Engineering Technology

2005-04-11
2005-01-0466
The General Motors (GM) Corvette design team was challenged with providing a C6 Z06 vehicle spaceframe that maintained the structural performance of its C5 predecessor while reducing mass by at least 56 kg. An additional requirement inherent to the project was that the design must be integrated into the C6 assembly processes with minimal disruption, i.e. seamless integration. In response to this challenge, a collaborative team was formed, consisting of design engineers from General Motors, Alcoa and Dana Corporation. The result of this collaborative effort is an aluminum Z06 spaceframe that satisfies the high performance expectations of the vehicle while reducing the mass by approximately 62 kg. The frame consists of aluminum extrusions, castings and sheets joined by MIG welding, laser welding and self-piercing rivets. The extrusions are 6XXX series alloys, the castings are permanent mold A356 while the sheet panels are formed from the 5XXX series of alloys.
Technical Paper

2022-Global Kinetic Modeling of a Commercial DOC Based on a Reduced Synthetic Gas Bench Protocol

2022-03-29
2022-01-0558
Various techniques are constantly being devised to accelerate model generation leading to shorter product development cycle. This work proposes and implements a reduced synthetic gas bench (SGB) test protocol for a commercial Pt-Pd diesel oxidation catalyst (DOC) that can be used to develop global reaction kinetics. The kinetics thus developed were implemented in a 1D model to predict DOC emissions accurately over a wide operating window. Hydrocarbons (HCs) in the exhaust were categorized as Propylene (C3H6) representing partially oxidized hydrocarbons and n-Decane (C10H22) representing unburnt fuel. Test protocols were defined using the order of inhibition of the various species present in the exhaust, namely, CO, NOx (NO+NO2) and HC for the specific reaction under consideration. The oxidation reactions for CO and HCs were found to be inhibited competitively by CO and HCs; both the NOx species inhibited these reactions to the same extent.
Standard

3D CAD for SAE J826 H-Point Machine

2021-11-16
CURRENT
J826/3_202111
This document describes the 3D computer-aided design (CAD) parts and file formats for the HPM-1 H-point machine available from SAE. The intended purpose for this information is to provide a master CAD reference for design and benchmarking.
Technical Paper

4 Stroke Gasoline Engine Performance Optimization Using Statistical Techniques

2001-12-01
2001-01-1800
The engine designer has to find novel methods to optimize the engine efficiency faster as the engine development cycle is getting shortened due to the continuous growing market demands. Engine optimization involves fine tuning of the various engine parameters and conducting a large number of tests on actual engine test bed. In this paper, modern techniques that have been used to optimize a small 4stroke air-cooled engine performance have been described. The engine has been modelled using one-dimensional thermodynamic engine modelling software (AVL-BOOST). Design of experiments (DoE) tools have been used to optimize the engine variables. The input parameters form an orthogonal array of L27 matrix and the out put characteristics of the engine (responses) have been predicted by using BOOST software. This design matrix has been used to study and optimize thirteen factors in three levels (313).
Technical Paper

4000 F Oxidation Resistant Thermal Protection Materials

1966-02-01
660659
Coated refractory metals, coated and alloyed graphites, hafnium-tantalum alloys, refractory borides, and stabilized zirconias are considered for the 3600–4000 F high-velocity air environment. Only refractory borides and stabilized zirconias are indicated as offering long duration and reuse capabilities for such high-temperature utilization. Iridium, as coatings on substrates of either graphites or refractory metals, appears attractive for shorter times (less than 1 hr). Environmental evaluation and the need for a theoretical framework to enable the prediction of performance data for such materials are indicated to be major problems facing users and suppliers.
Technical Paper

4300°F Thermocouples for Re-entry Vehicle Applications – Part I

1963-01-01
630359
This paper discusses work performed in research, design, and development of sensors for measurement of local dynamic surface temperatures on re-entry vehicles. Included are discussions of the basic requirements and related system design factors, the transducer concepts and sensor assembly configurations considered, and the materials investigations and engineering tests conducted. Design requirements are presented for the twin-lead thermocouple probe temperature sensor chosen as the most feasible concept for early implementation. The most promising thermocouple materials and fabrication processes are defined and the additional precision testing and development requirements for final design are outlined. Information not previously reported in available literature includes preliminary data from tests up to4300°F showing (1) excellent oxidation resistance of Iridium, and (2) oxidation protection of thermocouple elements in “gas tight” sheaths of thoria and zirconia.
Technical Paper

5-Axis Flex Track System

2012-09-10
2012-01-1859
Flex Track Systems are seeing increased usage in aerospace applications for joining large assemblies, such as fuselage sections. Previous systems were limited to work pieces that allowed the tracks to follow a gentle radius of curvature, limiting the locations where the system could be used. This paper describes a new 5-Axis Flex Track System developed to expand the usage of the systems, allowing them to process work pieces containing complex and irregular contours. Processing complex contours is accomplished through the addition of A and B axes providing normalization in multiple directions. These new systems are configured with the latest multi-function process capabilities allowing drilling, hole quality measurement, and temporary or permanent fastener installation.
Technical Paper

700 H.P. TRUCK TRANSPORT

1967-02-01
670700
SIGNIFICANT REDUCTION IN THE TRANSPORTATION COST PER TON MILE OF BULK PRODUCTS IS ATTAINABLE BY THE PROPER ADAPTATION OF A TRUCK TRAIN TRANSPORT. IMPROVED HAUL ROADS, GREATER DISTANCES, AND INCREASED DEMAND FOR MINE PRODUCTS AT COMPETITIVE PRICES ARE RESULTING IN A RE-EVALUATION OF ALL COST ASPECTS OF MATERIAL MOVEMENT. THE TRUCK TRAIN CONCEPT USING RELATIVELY SMALLER TIRES THAN LARGE PIT TRUCKS OPENS THE DOOR TO REDUCED OPERATING COSTS BY LOWERING CYCLE TIMES AND COST PER MILE OF TIRES AND CAPITAL INVESTMENT.
Technical Paper

72 Curved Fins and Air Director Idea Increases Airflow through Brake Rotors

1999-03-01
1999-01-0140
Hayes Lemmerz has pursued fin configurations in straight and curved fin rotors to achieve high airflow velocity. The largest increase in airflow velocity of 37.2% is achieved by curving fins to a specific entry and exit angle and increasing surface area by increasing fin number. There is a need for funneling air into the narrow entry in the hub area. The new “Hayes Air Director” successfully channels air into the curved fins. Hayes Lemmerz is in the process of casting rotors with curved fins and the air director idea. Dynamometer and vehicle tests will follow. The current renwood model of the rotor design shows 34.8 to 37.2% increase in airflow velocity when tested on the Hayes Airflow machine.
Technical Paper

777 Automated Spar Assembly Tool - Second Generation

1995-09-01
952172
The Automated Spar Assembly Tool (ASAT II) at the Everett, Washington, 777 Boeing manufacturing facility could be the largest automated fastening cell in the commercial aircraft industry. Based on the success of the ASAT I, Boeing's 767 spar assembly tool, the 285-foot long ASAT II cell was needed to accurately position and fasten the major spar components (chords and web), then locate and fasten over 100 components (ribposts and stiffeners) to assemble the 777 forward and rear wing spars. From its inception in 1990 to the first drilled hole in January 1993 and through two years of spar production, the more advanced ASAT II has proven to be a greater success than even its 767 ASAT I predecessor. This massive automated fastening system consistently provides accurate hole preparation, inspection, and installation of three fastener types ranging from 3/16 inches to 7/16 inches in diameter.
X