Refine Your Search

Topic

Search Results

Standard

ELECTROMAGNETIC SUSCEPTIBILITY MEASUREMENT PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1987-08-01
CURRENT
J1113_198708
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

ELECTROMAGNETIC SUSCEPTIBILITY PROCEDURES FOR VEHICLE COMPONENTS (EXCEPT AIRCRAFT)

1984-06-01
HISTORICAL
J1113_198406
This SAE Recommended Practice establishes uniform laboratory measurement techniques for the determination of the susceptibility to undesired electromagnetic sources of electrical, electronic, and electromechanical ground-vehicle components. It is intended as a guide toward standard practice, but may be subject to frequent change to keep pace with experience and technical advances, and this should be kept in mind when considering its use.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Immunity to AC Power Line Electric Fields

2021-12-13
CURRENT
J1113/26_202112
This SAE Recommended Practice covers the recommended testing techniques for the determination of electric field immunity of an automotive electronic device when the device and its wiring harness is exposed to a power line electric field. This technique uses a parallel plate field generator and a high voltage, low current voltage source to produce the field.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2011-06-07
HISTORICAL
J1113/13_201106
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility Measurement Procedure for Vehicle Components - Part 13: Immunity to Electrostatic Discharge

2015-02-26
CURRENT
J1113/13_201502
This SAE Standard specifies the test methods and procedures necessary to evaluate electrical components intended for automotive use to the threat of Electrostatic Discharges (ESDs). It describes test procedures for evaluating electrical components on the bench in the powered mode and for the packaging and handling non-powered mode. A procedure for calibrating the simulator that is used for electrostatic discharges is given in Appendix A. An example of how to calculate the RC Time Constant is given in Appendix B Functional Performance Status Classifications for immunity to ESD and Sensitivity classifications for ESD sensitive devices are given in Appendix C.
Standard

Electromagnetic Compatibility—Component Test Procedure—Part 42—Conducted Transient Emissions

2010-12-08
CURRENT
J1113/42_201012
This SAE Standard defines a component-level test procedure to evaluate automotive electrical and electronic components for Conducted Emissions of transients, and for other electromagnetic disturbances, along battery feed (B+) or switched ignition inputs of a Device Under Test (DUT). Test apparatus specifications outlined in this procedure were developed for components installed in the 12-V passenger cars, light trucks, 12 V heavy-duty trucks, and vehicles with 24 V systems.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2017-10-10
HISTORICAL
J551/16_201710
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2022-09-30
CURRENT
J551/16_202209
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Electromagnetic Immunity - Off-Vehicle Source (Reverberation Chamber Method) - Part 16 - Immunity to Radiated Electromagnetic Fields

2012-05-11
HISTORICAL
J551/16_201205
Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
Standard

Function Performance Status Classification for EMC Immunity Testing

2007-05-14
HISTORICAL
J1812_200705
This SAE Standard provides a general method for defining the acceptable function performance status classification for the functions of automotive electronic devices upon application of the test conditions specified as described in appropriate EMC immunity test standards (for example, SAE J1113 and SAE J551). Testing of devices could be performed either on or off vehicles. Appropriate test signal and methods, Function Performance status, and test signal severity level would have to be specified in the individual cases.
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1082_202305
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Immunity to Conducted Transients on Power Leads

2023-03-20
CURRENT
J1113/11_202303
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Immunity to Conducted Transients on Power Leads

2012-01-30
HISTORICAL
J1113/11_201201
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Immunity to Conducted Transients on Power Leads

2018-12-10
HISTORICAL
J1113/11_201812
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Immunity to Conducted Transients on Power Leads

2017-06-13
HISTORICAL
J1113/11_201706
This SAE Standard defines methods and apparatus to evaluate electronic devices for immunity to potential interference from conducted transients along battery feed or switched ignition inputs. Test apparatus specifications outlined in this procedure were developed for components installed in vehicles with 12-V systems (passenger cars and light trucks, 12-V heavy-duty trucks, and vehicles with 24-V systems). Presently, it is not intended for use on other input/output (I/O) lines of the device under test (DUT).
Standard

Measurement of Radiated Emissions from Integrated Circuits—Surface Scan Method (Loop Probe Method) 10 MHz to 3 GHz

2016-09-16
CURRENT
J1752/2_201609
This SAE Recommended Practice defines a method for evaluating the near field electric or magnetic component of the electromagnetic field at the surface of an integrated circuit (IC). This technique is capable of providing a detailed pattern of the RF sources internal to the IC. The resolution of the pattern is determined by the characteristics of the probes used and the precision of the mechanical probe positioner. The method is usable over the 10 MHz to 3 GHz frequency range with existing probe technology. The probe is mechanically scanned according to a programmed pattern in a plane parallel or perpendicular to the IC surface and the data is computer processed to provide a color-enhanced representation of field strength at the scan frequency. This procedure is applicable to measurements from an IC mounted on any circuit board that is accessible to the scan probe. For comparisons, the standardized test board shall be used.
X