Refine Your Search

Topic

Search Results

Standard

400 Hz CONNECTION AIRCRAFT ELECTRICAL MAINTENANCE PROCEDURES

1994-12-01
HISTORICAL
AIR4365
This SAE Aerospace Information Report (AIR) describes field-level procedures to determine if 400 Hz electrical connections for external power may have been subjected to excessive wear, which may result in inadequate disengagement forces.
Standard

400-CYCLE GROUND POWER UNIT PROVISIONS FOR AIRCRAFT ELECTRICAL SYSTEM PROTECTION

2002-12-16
CURRENT
ARP760
This SAE Recommended Practice which defines the terms and tabulates the limits of the characteristics for various protective devices used in conjunction with 400-cycle ground power for civil aircraft is intended to assist the airlines in standardizing on 400-cycle protective systems. The limits found to be acceptable in the civil aircraft industry are presented.
Standard

Aircraft Cargo Conveyor

2023-03-29
WIP
ARP1836D
This SAE Aerospace Recommended Practice (ARP) outlines the functional and design requirements for a b self-propelled belt conveyor for handling baggage and cargo at aircraft bulk cargo holds. Additional considerations and requirements may legally apply in other countries. As an example, for operation in Europe (E.U. and E.F.T.A.), the applicable EN standards shall be complied with.
Standard

Aircraft Damage Caused by Ground Support Equipment

2022-05-16
CURRENT
AIR1589C
Incidents where a piece of ground support equipment or personnel damages an aircraft under the control of ground or maintenance operations that requires corrective action by aircraft maintenance personnel. Operations include, but are not limited to servicing, line maintenance, heavy maintenance, and aircraft movement, e.g., marshalling/pushback/tow/reposition/taxi.
Standard

Aircraft Ground Support Equipment - Wind Stability Determination

2012-10-15
HISTORICAL
ARP1328B
This SAE Aerospace Recommended Practice (ARP) is intended to recommend: a uniform criteria for determination of wind loads that aircraft ground support equipment can encounter and yet allow personnel to work safely, b uniform systems for maintaining stability (i.e., stabilizers, outriggers, spring lockout devices), c standardization of specific types of interlock systems and actuation systems, d a standard formula with its associated design criteria for calculating the steady-state wind stability (i.e., tip point) for aircraft ground support equipment, e a standard method for testing these systems.
Standard

Aircraft Ground Support Equipment - Wind Stability Determination

2017-05-04
HISTORICAL
ARP1328C
This SAE Aerospace Recommended Practice (ARP) is intended to recommend: a uniform criteria for determination of wind loads that aircraft ground support equipment can encounter and yet allow personnel to work safely, b uniform systems for maintaining stability (i.e., stabilizers, outriggers, spring lockout devices), c standardization of specific types of interlock systems and actuation systems, d a standard formula with its associated design criteria for calculating the steady-state wind stability (i.e., tip point) for aircraft ground support equipment, e a standard method for testing these systems.
Standard

Aircraft Ground Support requirement for maintenance and operation of Preconditioned Air units (PCA) and Passenger Boarding Bridge (PBB) supplying air to the cabin

2022-07-11
WIP
ARP6986
The provisions of this standard cover minimum performance requirements and design parameters for Preconditioned Air units (PCA) devices supplying air the aircraft cabin. It identifies the need for interim and future performance improvement for ground equipment delivery systems, to meet industry requirement for reducing airborne compounds or particulates (“source types”) in aircraft cabin and flight deck.
Standard

Aircraft Tow Bar

2005-04-06
HISTORICAL
ARP1915C
This SAE Aerospace Recommended Practice (ARP) outlines the basic general design considerations for transport aircraft tow bars. It does not cover the requirements for tow bars intended for aircraft with a maximum ramp mass (MRW) below 8,600 kg (19,000 lb).
Standard

Aircraft Tow Bar

2010-09-13
HISTORICAL
ARP1915D
This SAE Aerospace Recommended Practice (ARP) outlines the basic general design considerations for transport aircraft tow bars. It does not cover the requirements for tow bars intended for aircraft with a maximum ramp mass (MRW) below 8600 kg (19 000 lb).
Standard

Aircraft Tow Bar

2021-04-08
CURRENT
ARP1915E
This SAE Aerospace Recommended Practice (ARP) specifies dimensional and physical requirements of tow bar connections to tractor and aircraft (see Figure 1). It is applicable to all types of commercial transport category aircraft tow bar. The purpose of this SAE Aerospace Recommended Practice (ARP) is to standardize tow bar attachments to airplane and tractor according to the mass category of the towed aircraft, so that one tow bar head with different shear levels can be used for all aircraft that are within the same mass category and are manufactured in compliance with AS1614 or ISO 8267.
Standard

Aircraft Towbar

1997-12-01
HISTORICAL
ARP1915B
This SAE Aerospace Recommended Practice (ARP) outlines the basic general design considerations for aircraft towbars.
Standard

Battery Powered Aircraft Tow Tractors - Factors for Design Consideration

2023-10-16
WIP
AIR1854B
This SAE Aerospace Information Report (AIR) identifies and summarizes the various factors that must be considered and evaluated by the design or specifying engineer in establishing the specifications and design characteristics of battery-powered aircraft tow tractors. This AIR is presented in two parts. The first part is simply a summarization of design factors that must be considered in establishing vehicle specifications and design characteristics. The second part refers particularly to the performance characteristics of an aircraft tow tractor. Some definitions, formulas, data, and an example are provided mainly for assisting the specifying engineers of potential buyers and users of aircraft tow tractors in the evaluation and comparison of their requirements with the performance capabilities of the various tow tractors offered by the tow tractor manufacturers.
X