Refine Your Search

Topic

Search Results

Standard

FUEL SYSTEM ELECTROSTATIC CHARGE

1994-02-01
HISTORICAL
J1645_199402
The purpose of this SAE Information Report is to provide a summary of the electrostatic charge phenomenon (as it relates to an automotive fuel system) and how that phenomenon could be handled if it develops. The "fuel system" that is the subject of this document is the group of components used during the operation of the vehicle (tank, filler neck, pump, filter, lines, connectors, etc.). Electrostatic charge that may arise during refueling is also included. It is very important to note that this is a collection of ideas and generalities that are summarized from literature and presentations, inferred from some laboratory experimentation, and interpreted by the Electrostatics Subcommittee of the SAE Fuel Lines and Fittings Standards Committee. Some of the discussions are simplified. If more technical information is needed by users of this document, experts should be consulted or literature should be examined directly.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2014-02-05
HISTORICAL
J2973_201402
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Fuel Components and Systems Leak Tightness Specifications and Test Practices (or Methods)

2018-12-19
CURRENT
J2973_201812
This SAE recommended practice specifies a standard geometry leak channel to set the leak threshold and compare results from a variety of leak test technologies and test conditions. This practice applies to fuel system assemblies and components which have a risk of allowing regulated fuel or fuel vapors to continuously escape to atmosphere. A component or assembly tested to this standard has a zero HC leakage threshold because the selected leak channel (Equivalent Channel) will self-plug and will not emit measurable hydrocarbon liquid or vapors. Therefore this standard eliminates leaks as a source of evaporative emission. This practice was primarily developed for pressurized and non-pressurized fuel systems and components containing liquid hydrocarbon based fuels.
Standard

Fuel Systems and Components - Electrostatic Charge Mitigation

2019-09-13
CURRENT
J1645_201909
This SAE Surface Vehicle Recommended Practice deals with electrostatic charge phenomena that may occur in automotive fuel systems and applies to the following: Fuels that are in a liquid state at ambient temperatures and atmospheric pressures and are contained in vehicle fuel tanks that operate at or near atmospheric pressure. This includes gasoline and diesel fuels, as well as their blends with additives such as alcohols, esters, and ethers, whether the additives are petroleum based or bio-fuel based. The group of components that comprise the fuel system (in contact and not in contact with fuels). Other components in proximity to the fuel system that may be affected by electrostatic fields caused by the fuel system. Electrostatic phenomena that arise from, or are affected by, the following aspects of vehicle or fuel system operation: ○ Flowing fuel in the fuel delivery system. ○ Flowing fuel being dispensed to the vehicle while it is being fueled.
Standard

Fuel Systems and Components - Electrostatic Charge Mitigation

2011-10-25
HISTORICAL
J1645_201110
This SAE Surface Vehicle Recommended Practice deals with electrostatic charge phenomena that may occur in automotive fuel systems and applies to the following: Fuels that are in a liquid state at ambient temperatures and atmospheric pressures and are contained in vehicle fuel tanks that operate at or near atmospheric pressure. This includes gasoline and diesel fuels as well as their blends with additives such as alcohols, esters and ethers whether the additives are petroleum based or bio-fuel based. The group of components that comprise the fuel system (in contact and not in contact with fuels). Other components in proximity to the fuel system that may be affected by electrostatic fields caused by the fuel system. Electrostatic phenomena that arise from or are affected by the following aspects of vehicle or fuel system operation: ○ Flowing fuel in the fuel delivery system ○ Flowing fuel being dispensed to the vehicle while it is being fueled
Standard

Fuel Systems and Components—Electrostatic Charge Mitigation

2006-08-16
HISTORICAL
J1645_200608
This SAE Surface Vehicle Recommended Practice deals with electrostatic charge phenomena that may occur in automotive fuel systems and applies to the following: Fuels that are in a liquid state at ambient temperatures and atmospheric pressures and are contained in vehicle fuel tanks that operate at or near atmospheric pressure. The group of components that comprise the fuel system (in contact and not in contact with fuels). Other components in proximity to the fuel system that may be affected by electrostatic fields caused by the fuel system. Electrostatic phenomena that arise from or are affected by the following aspects of vehicle or fuel system operation: a Flowing fuel in the fuel delivery system b Flowing fuel being dispensed to the vehicle while it is being fueled
Standard

Methods for Determining Physical Properties of Polymeric Materials Exposed to Hydrocarbon Fuels or Their Surrogates and Their Blends with Oxygenated Additives

2007-09-27
HISTORICAL
J1748_200709
This SAE Recommended Practice applies to determining worst-case fuel or test fluid surrogate, conditioning test specimens in worst-case fuel(s)/surrogate(s) prior to testing, individual tests for properties of polymeric materials exposed to oxygenate fuel/surrogate mixtures with additives. The determination of equilibrium, as well as typical calculations are also covered.
Standard

Methods for Determining Physical Properties of Polymeric Materials Exposed to Hydrocarbon Fuels or Their Surrogates and Their Blends with Oxygenated Additives

2018-08-13
CURRENT
J1748_201808
This SAE Recommended Practice applies to determining worst-case fuel or test fluid surrogate, conditioning test specimens in worst-case fuel(s)/surrogate(s) prior to testing, individual tests for properties of polymeric materials exposed to oxygenate fuel/surrogate mixtures with additives. The determination of equilibrium, as well as typical calculations are also covered.
Standard

NONMETALLIC FUEL SYSTEM TUBING

1994-05-01
HISTORICAL
J2043_199405
This SAE Standard covers the minimum requirements for nonmetallic tubing as manufactured for use in gasoline or diesel fuel systems. It is not intended to cover tubing for any portion of the system which operates below -40 °C, above 115 °C, or above a maximum working gage pressure of 690 kPa.
Standard

Nonmetallic Fuel System Tubing with One or More Layers

2004-11-01
CURRENT
J2260_200411
This SAE Standard presents the minimum requirements for nonmetallic tubing with one or more layers manufactured for use as liquid-carrying or vapor-carrying component in fuel systems for gasoline, or alcohol blends with gasoline. Requirements in this document also apply to monowall tubing (one layer construction). When the construction has one or more layers of polymer-based compounds in the wall, the multilayer constructions are primarily for the purpose of improvement in permeation resistance to hydrocarbons found in various fuels. The tube construction can have a straight-wall configuration, a wall that is convoluted or corrugated, or a combination of each. It may have an innermost layer with improved electrical conductivity for use where such a characteristic is desired. The improved electrical conductivity can apply to the entire wall construction, if the tubing is a monowall. (For elastomeric based MLT constructions, refer to SAE J30 and SAE J2405).
Standard

PRELIMINARY STANDARD FOR PROTECTIVE COVERS FOR GASOLINE FUEL LINE TUBING

1994-06-01
HISTORICAL
J2027_199406
This SAE Standard covers the performance requirements for protective covers for gasoline fuel tubing. The ultimate performance of the protective cover can be highly dependant on the interaction of the fuel line tubing and protective cover. Therefore, it is recommended that specific tubing and cover combinations be tested as an assembly to qualify to this document.
Standard

Performance Requirements for Fuel System Tubing Assemblies

2012-11-01
CURRENT
J2045_201211
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above −40 °C (−40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly.
Standard

Performance Requirements for Fuel System Tubing Assemblies

1998-02-01
HISTORICAL
J2045_199802
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as a liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above –40 °C (–40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psi). The peak intermittent temperature is 115 °C 239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly.
Standard

Rated (Advertised) Fuel Capacity - Passenger Car, Multi-Purpose Passenger Vehicles, and Light Duty Trucks

2012-11-01
CURRENT
J398_201211
This recommended practice provides a method for establishing the rated or advertised fuel capacity for a vehicle utilizing liquid fuel at atmospheric pressure. It applies to passenger cars, multi-purpose passenger vehicles and light duty trucks (10 000 lb (4536 kg) maximum GVW), (Ref. SAE J1100). It also includes a standardized procedure for creating a full tank when another test requires that condition as a starting point. It is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
Standard

Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives

2013-05-14
CURRENT
J1747_201305
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Standard

Recommended Methods for Conducting Corrosion Tests in Hydrocarbon Fuels or Their Surrogates and Their Mixtures with Oxygenated Additives

2007-07-20
HISTORICAL
J1747_200707
This SAE Recommended Practice presents standardized test methods developed for use in testing with hydrocarbon fuels or their surrogates and those same fuels when blended with oxygenated fuel additives. Hydrocarbon fuels include Gasoline and Diesel fuel or their surrogates described in SAE J1681. Oxygenated additives include Ethanol, Methanol Methyl Tertiary Butyl Ether (MTBE) and Fatty Acid Methyl Esters (FAME or Biodiesel).
Standard

Requirements for Built-In Service Port for On Board Diagnostics

2008-08-11
HISTORICAL
J2744_200808
This document presents the requirements for a built-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emissions Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuates them out of, the system. This access may be used for the following evaluations: • Evaporative System Certifications Canister Loading and Purging • End-of-line Testing System Integrity • Service (e.g. OBD MIL on) Leak Location and Repair Verification • In-Use Compliance Testing Canister Loading and Purging • Inspection/Maintenance Testing System Integrity and Purge Check
Standard

Standard for Protective Covers for Gasoline Fuel Line Tubing

1998-06-01
HISTORICAL
J2027_199806
This SAE Standard includes performance requirements for protective covers for flexible, non-metallic fuel tubing. Ultimate performance of the protective cover may be dependent on the interaction of the fuel tubing and protective cover. Therefore, it is recommended that tubing and cover combinations be tested as an assembly, where appropriate, to qualify to this document.
X