Refine Your Search

Topic

Search Results

Standard

AIRCRAFT BRAKE TEMPERATURE MONITOR SYSTEMS (BTMS)

1992-06-01
HISTORICAL
AS1145A
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

AUTOMATIC BRAKING SYSTEMS REQUIREMENTS

1993-04-01
HISTORICAL
ARP1907
This ARP covers the functional, design, construction, and test requirements for Automatic Braking Systems. Installation information and lessons learned are also included.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2016-09-14
CURRENT
AS1145C
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Brake Temperature Monitor Systems (BTMS)

2012-05-09
HISTORICAL
AS1145B
This specification covers minimum requirements for brake temperature monitoring equipment whenever used on any type and model of civil aircraft. It shall be the responsibility of the purchaser to determine the compatibility of these requirements with the application aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Tire Inflation-Deflation Equipment

2014-07-11
CURRENT
AS1188A
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Aircraft Tire Inflation-Deflation Equipment

2008-06-16
HISTORICAL
AS1188
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
Standard

Carbon Brake Contamination

2012-05-09
HISTORICAL
AIR5490
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide recommendations for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Carbon Brake Contamination and Oxidation

2016-04-12
CURRENT
AIR5490A
This document provides information on contamination and its effects on brakes having carbon-carbon composite friction materials (carbon). Carbon is hygroscopic and porous, and therefore readily absorbs liquids and contaminants. Some of the contaminants can impact intended performance of the brake. This document is intended to raise awareness of the effects of carbon brake contamination and provide information on industry practices for its prevention. Although not addressed in this report, contaminants can cause problems with other landing system components including tires.
Standard

Compilation of Freezing Brake Experience and Potential Designs and Operating Procedures to Prevent Its Occurrence

2016-05-24
CURRENT
AIR4762A
This Aerospace Information Report (AIR) describes conditions under which freezing (frozen) brakes can occur and describes operating procedures which have been used to prevent or lessen the severity or probability of brake freezing. This document also identifies design features that some manufacturers implement to minimize the occurrence of freezing brakes. This document is not an Aerospace Recommended Practice (ARP) and therefore does not make recommendations based on a consensus of the industry. However, part of this document’s purpose is to describe the design and operational practices that some are using to minimize the risk of frozen brakes. NOTE: The following information is based upon experience gained across a wide-range of aircraft types and operational profiles, and should NOT take precedence over Aircraft Flight Manual or Flight Operations Procedures.
Standard

Design and Testing of Antiskid Brake Control Systems for Total Aircraft Compatibility

2013-04-22
HISTORICAL
ARP1070C
This document recommends minimum requirements for antiskid brake control to provide total aircraft systems compatibility. Design and operational goals, general theory, and functions, which should be considered by the aircraft brake system engineer to attain the most effective skid control performance, are covered in detail. Methods of determining and evaluating antiskid system performance are discussed. While this document specifically addresses antiskid systems which are a part of a hydraulically actuated brake system, the recommended practices are equally applicable to brakes actuated by other means, such as electrically actuated brakes.
Standard

Disposition of Damaged Wheels Involved in Accidents/Incidents

2020-09-17
CURRENT
ARP5600
This SAE Aerospace Recommended Practice (ARP) establishes a procedure for disposition of aircraft wheels that have been involved in accidents/incidents or have been exposed to overheat conditions or overload conditions from loss of adjacent tire pressure (paired wheels) or wheel tie bolts.
Standard

Military Service Experience - Aircraft Wheels

2000-10-01
HISTORICAL
AIR4012A
This SAE Aerospace Information Report (AIR) is intended to provide general background on aircraft wheel service lives on military aircraft and wheel laboratory test requirements as specified by military procurement agencies or aircraft manufacturers. Wheel service life in this document refers to the lowest life wheel half or flange in a wheel assembly measured in years (excluding bearing, bolt, and other removals). This information is intended as a reference guide for those responsible for specifying original equipment (OE) wheel laboratory test requirements.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2012-07-19
CURRENT
ARP5381A
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Performance Recommendations for Part 23, 27, and 29 Aircraft Wheels, Brakes, and Wheel and Brake Assemblies

2006-03-17
HISTORICAL
ARP5381
This Minimum Performance Document defines the testing required for wheels, brakes, and wheel and brake assemblies to be used on civil aircraft certified under 14 Code of Federal Regulations (CFR) Part 23, 27, and 29. Compliance with this document is recommended to assure that the equipment supplied will meet the intended design function when installed on aircraft. Compliance with this document does not constitute authorization for installation on an aircraft. The combined recommendations of this document provide an acceptable practice, but not the only practice, for obtaining authorization to apply TSO markings on the equipment.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-07-11
CURRENT
AS5663A
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
Standard

Minimum Performance Requirements for Transport Airplane Wheel and Brake Assemblies Using Electric Power Actuation

2012-05-09
HISTORICAL
AS5663
In lieu of TSO-C135, this SAE Aerospace Standard (AS) prescribes the minimum performance standards for wheels, brakes, and wheel and brake assemblies using electric power actuation for transport category (14 CFR Part 25) airplanes. Testing is limited to that necessary to establish minimum performance related to strength, robustness, stopping capability, and energy absorption to ensure measurable, repeatable industry accepted standards for these aspects of wheel and brake performance. The test parameters associated with electric braking actuation are defined around the state of the technology at this time, typically comprised of an Electro-Mechanical Actuator (EMA) controlled by a control system delivering electric power and effecting motor control.
X