Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Technical Paper

A Study of Fuel Nitrogen Conversion, Performance, and Emission Characteristcs of Blended SCR-II in a High-Speed Diesel Engine

1981-02-01
810251
Engine operation with blended SRC-II and pyridine doped diesel fuel were compared relative to regular #2 diesel fuel in a 4-stroke, turbocharged, direct injection, high speed commercial diesel engine. The brake specific fuel consumption, (M-Joule/hp-hr), turbocharging, combustion characteristics and smoke did not change between blended SRC-II and regular #2 diesel fuel. This was expected since the sample fuels were blended to be of the same cetane number. The maximum torque, hydrocarbon and NOx emissions were higher for blended SRC-II. There was essentially no difference in the NOx measurements of the pyridine doped fuel and regular #2 diesel fuel. The NOx emission increase for the blended SRC-II is believed to be caused by the increased aromatic content of the blended SRC-II and not the fuel nitrogen conversion.
Technical Paper

Aldehyde and Unburned Fuel Emission Measurements from a Methanol-Fueled Texaco Stratified Charge Engine

1985-10-01
852120
A Texaco L-163S TCCS (Texaco Controlled Combustion System) engine was operated with pure methanol to investigate the origin and mechanism of unburned fuel (UBF) and formaldehyde emissions. The effects of engine load, speed and coolant temperature on the exhaust emissions were studied using both continuous and time-resolved sampling methods. Within the range studied, increasing the engine load resulted in a decrease of the exhaust UBF emissions and an increase in the formaldehyde emissions. Engine speed had little effect on both UBF and formaldehyde emissions. Decreasing the engine coolant temperature from 85°C to 45°C caused the exhaust UBF emissions to approximately double and the formaldehyde emission to increase approximately 20 percent. It is hypothesized that both fuel impingement and spray tailing are responsible for the high UBF emissions. In-cylinder formation of formaldehyde was found to be the major source of the exhaust aldehyde emissions in this experiment.
Journal Article

Analysis of Deviations from Steady State Performance During Transient Operation of a Light Duty Diesel Engine

2012-04-16
2012-01-1067
Deviations between transient and steady state operation of a modern light duty diesel engine were identified by comparing rapid load transitions to steady state tests at the same speeds and fueling rates. The validity of approximating transient performance by matching the transient charge air flow rate and intake manifold pressure at steady state was also assessed. Results indicate that for low load operation with low temperature combustion strategies, transient deviations of MAF and MAP from steady state values are small in magnitude or short in duration and have relatively little effect on transient engine performance. A new approximation accounting for variations in intake temperature and excess oxygen content of the EGR was more effective at capturing transient emissions trends, but significant differences in magnitudes remained in certain cases indicating that additional sources of variation between transient and steady state performance remain unaccounted for.
Technical Paper

Application of A Multiple-Step Phenomenological Soot Model to HSDI Diesel Multiple Injection Modeling

2005-04-11
2005-01-0924
Multiple injection strategies have been revealed as an efficient means to reduce diesel engine NOx and soot emissions simultaneously, while maintaining or improving its thermal efficiency. Empirical soot models widely adopted in engine simulations have not been adequately validated to predict soot formation with multiple injections. In this work, a multiple-step phenomenological (MSP) soot model that includes particle inception, surface growth, oxidation, and particle coagulation was revised to better describe the physical processes of soot formation in diesel combustion. It was found that the revised MSP model successfully reproduces measured soot emission dependence on the start-of-injection timing, while the two-step empirical and the original MSP soot models were less accurate. The revised MSP model also predicted reasonable soot and intermediate species spatial profiles within the combustion chamber.
Technical Paper

Bridging the Gap between HCCI and SI: Spark-Assisted Compression Ignition

2011-04-12
2011-01-1179
Homogeneous charge compression ignition (HCCI) has received much attention in recent years due to its ability to reduce both fuel consumption and NO emissions compared to normal spark-ignited (SI) combustion. However, due to the limited operating range of HCCI, production feasible engines will need to employ a combination of combustion strategies, such as stoichiometric SI combustion at high loads and leaner burn spark-assisted compression ignition (SACI) and HCCI at intermediate and low loads. The goal of this study was to extend the high load limit of HCCI into the SACI region while maintaining a stoichiometric equivalence ratio. Experiments were conducted on a single-cylinder research engine with fully flexible valve actuation. In-cylinder pressure rise rates and combustion stability were controlled using cooled external EGR, spark assist, and negative valve overlap. Several engine loads within the SACI regime were investigated.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Technical Paper

Can Paper Engines Stand the Heat?

1984-01-01
840911
Accurate and useful mathematical models of physical processes can be made when we understand all of the phenomena involved. This paper reviews our understanding of the fluid flow, heat transfer and thermodynamic processes occurring in engines and the status of mathematical models expressing this understanding. Thermodynamic single system rate models are found to be extremely useful in predicting power and fuel consumption performance but of limited value in predicting emission performance. Multiple-zone, nonequilibrium models are essential for predicting emissions but are limited in accuracy by computer capacity and our understanding of engine phenomena which vary rapidly both with space and time. The need for and ability of new types of instrumentation, primarily optical, to increase our understanding of engine phenomena and improve our models is discussed.
Technical Paper

Characterization of Particulate Morphology, Nanostructures, and Sizes in Low-Temperature Combustion with Biofuels

2012-04-16
2012-01-0441
Detailed characteristics of morphology, nanostructures, and sizes were analyzed for particulate matter (PM) emissions from low-temperature combustion (LTC) modes of a single-cylinder, light-duty diesel engine. The LTC engines have been widely studied in an effort to achieve high combustion efficiency and low exhaust emissions. Recent reports indicate that the number of nucleation mode particles increased in a broad engine operating range, which implies a negative impact on future PM emissions regulations in terms of the nanoparticle number. However, the size measurement of solid carbon particles by commercial instruments is indeed controversial due to the contribution of volatile organics to small nanoparticles. In this work, an LTC engine was operated with various biofuel blends, such as blends (B20) of soy bean oil (soy methyl ester, SME20) and palm oil (palm methyl ester, PME20), as well as an ultra-low-sulfur diesel fuel.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

Comparison of Numerical Results and Experimental Data on Emission Production Processes in a Diesel Engine

2001-03-05
2001-01-0656
Simulations of DI Diesel engine combustion have been performed using a modified KIVA-II package with a recently developed phenomenological soot model. The phenomenological soot model includes generic description of fuel pyrolysis, soot particle inception, coagulation, and surface growth and oxidation. The computational results are compared with experimental data from a Cummins N14 single cylinder test engine. Results of the simulations show acceptable agreement with experimental data in terms of cylinder pressure, rate of heat release, and engine-out NOx and soot emissions for a range of fuel injection timings considered. The numerical results are also post-processed to obtain time-resolved soot radiation intensity and compared with the experimental data analyzed using two-color optical pyrometry. The temperature magnitude and KL trends show favorable agreement.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Compression-Ignited Homogeneous Charge Combustion

1983-02-01
830264
Experimentally obtained energy release results, a semi-empirical ignition model, and an empirical energy release equation developed during this research were used to evaluate the combustion of compression-ignited homogeneous mixtures of fuel, air, and exhaust products in a CFR engine. A systematic study was carried out to evaluate the response of compression-ignited homogeneous charge (CIHC) combustion to changes in operating parameters with emphasis being placed on the phenomena involved rather than the detailed chemical kinetics. This systematic study revealed that the response of the combustion process to changes in operating parameters can be explained in terms of known chemical kinetics, and that through the proper use of temperature and species concentrations the oxidation kinetics of hydrocarbon fuels can be sufficiently controlled to allow an engine to be operated in a compression-ignited homogeneous charge combustion mode.
Technical Paper

Cylinder-Averaged Histories of Nitrogen Oxide in a D.I. Diesel with Simulated Turbocharging

1994-10-01
942046
An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine run conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERC modified KIVA-II computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend.
Technical Paper

Data from a Variable Rate Shape High Pressure Injection System Operating in an Engine Fed Constant Volume Combustion Chamber

1990-10-01
902082
In current systems, for a given nozzle and injection pressure (pump speed), the shape of the injection rate is fixed and the injection timing is the only variable the engine designer can vary. For this non-interactive injection system, changing the injector nozzle (number and diameter of holes) will proportionately change the injection shape. New injection systems in which the rate of injection is a controlled variable are being developed. Results from one such injector, called the UCORS (Universal Combustion Optimization and Rate Shaping), are reported in this paper. The system can dynamically control its injection rate shape by controlling the position and size of a pilot injection relative to the main injection. Data and analysis from an out-of-engine and combustion chamber study of the UCORS injection system are presented.
Technical Paper

Design and Development of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2003-03-03
2003-01-1259
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2002 competition. This is a two-year project with tiered goals; the base vehicle for both years is a 2002 Ford Explorer. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs approximately 2050 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 100 kW of peak power and a AC induction motor that provides an additional 33 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V6 drivetrain, as it provides comparable performance with similar emissions and drastically reduced fuel consumption.
Technical Paper

Design and Optimization of the University of Wisconsin's Parallel Hybrid-Electric Sport Utility Vehicle

2002-03-04
2002-01-1211
The University of Wisconsin - Madison FutureTruck Team has designed and built a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2001 competition. The base vehicle is a 2000 Chevrolet Suburban. Our FutureTruck is nicknamed the “Moollennium” and weighs approximately 2427 kg. The vehicle uses a high efficiency, 2.5 liter, turbo-charged, compression ignition common rail, direct-injection engine supplying approximately 104 kW of peak power and a three phase AC induction motor that provides an additional 68.5 kW of peak power. This hybrid drivetrain is an attractive alternative to the large displacement V8 drivetrain, as it provides comparable performance with lower emissions and fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) urban driving cycle fuel economy of 11.24 km/L (26.43 mpg) with California Ultra Low Emission Vehicle (ULEV) emissions levels.
Technical Paper

Design and Testing of a Prototype Hybrid-Electric Split-Parallel Crossover Sports Utility Vehicle

2007-01-16
2007-01-1068
The University of Wisconsin - Madison Hybrid Vehicle Team has designed, fabricated, tested and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2006 Challenge X competition. This multi-year project is based on a 2005 Chevrolet Equinox platform. Trade-offs in fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were weighed to establish Wisconsin's Vehicle Technical Specifications (VTS). Wisconsin's Equinox, nicknamed the Moovada, utilizes a General Motors (GM) 110 kW 1.9 L CIDI engine coupled to GM's 6-speed F40 transmission. The rear axle is powered by a 65 kW Ballard induction motor/gearbox powered from a 44-module (317 volts nominal) Johnson Controls Inc., nickel-metal hydride hybrid battery pack. It includes a newly developed proprietary battery management algorithm which broadcasts the battery's state of charge onto the CAN network.
Technical Paper

Design and Testing of a Prototype Midsize Parallel Hybrid-Electric Sport Utility

2004-01-25
2004-01-3062
The University of Wisconsin - Madison hybrid vehicle team has designed and constructed a four-wheel drive, charge sustaining, parallel hybrid-electric sport utility vehicle for entry into the FutureTruck 2003 competition. This is a multi-year project utilizing a 2002 4.0 liter Ford Explorer as the base vehicle. Wisconsin's FutureTruck, nicknamed the ‘Moolander’, weighs 2000 kg and includes a prototype aluminum frame. The Moolander uses a high efficiency, 1.8 liter, common rail, turbo-charged, compression ignition direct injection (CIDI) engine supplying 85 kW of peak power and an AC induction motor that provides an additional 60 kW of peak power. The 145 kW hybrid drivetrain will out-accelerate the stock V6 powertrain while producing similar emissions and drastically reducing fuel consumption. The PNGV Systems Analysis Toolkit (PSAT) model predicts a Federal Testing Procedure (FTP) combined driving cycle fuel economy of 16.05 km/L (37.8 mpg).
Technical Paper

Design of a Charge Regulating, Parallel Hybrid Electric FutureCar

1998-02-23
980488
Students, as members of Team Paradigm, at the University of Wisconsin-Madison have designed a charge regulating, parallel hybrid electric Dodge Intrepid for the 1997 FutureCar Challenge (FCC97). The goals for the Wisconsin “FutureCow” are to achieve an equivalent fuel consumption of 26 km/L (62 mpg) and Tier 2 Federal Emissions levels while maintaining the full passenger/cargo room, appearance, and feel of a stock Intrepid. These goals are realized through drivetrain simulations, a refined vehicle control strategy, decreased engine emissions, and aggressive weight reduction. The vehicle development has been coupled with 8,000 km of reliability and performance testing to ensure Wisconsin will be a strong competitor at the FCC97.
X