Refine Your Search

Search Results

Technical Paper

Computational Study of the Effects of Injection Timing, EGR and Swirl Ratio on a HSDI Multi-Injection Diesel Engine Emission and Performance

2003-03-03
2003-01-0346
Reductions in fuel consumption, noise level, and pollutant emissions such as, Nitrogen Oxide (NOX) and Particulate Matter (PM), from direct-injection (DI) diesel engines are important issues in engine research. To achieve these reductions, many technologies such as high injection pressure, multiple injection, retarded injection timing, EGR, and high swirl ratio have been used in high-efficiency DI diesel engines in order to achieve combustion and emission control. However, each technology has its own advantages and disadvantages, and there is a very strong interaction between these methods when they are simultaneously used in the engine. This study presents a computational study of both the individual effect and their interactions of injection timing, EGR and swirl ratio separately and their interaction in a HSDI common rail diesel engine using the KIVA-3V code.
Technical Paper

Diesel Engine Modelling Under Steady and Transient Conditions Using a Transputer Based Concurrent Computer

1992-10-01
922226
This paper describes the development of an interactive model to simulate a direct injection diesel engine under both steady and transient conditions, based on the application of concurrent process computing methods. Initially the engine is modelled operating under steady conditions and induction, injection, air entrainment, fuel air mixing, combustion, emission and the mechanical friction processes are considered. The fuel pump, governor, engine crankshaft and external load dynamics are incorporated in the model to study the transient behaviour of a 2.5 litre D. I. engine and its associated load. Employing a two zone combustion model enables detailed performance and exhaust emissions predictions to be produced with economic use of computing time. The model written in FORTRAN is implemented in parallel on a transputer based concurrent computer by using the transputer operating system language OCCAM as a harness. Model predictions compare favourably with experimental results.
Technical Paper

Diesel Soot Oxidation under Controlled Conditions

2001-09-24
2001-01-3673
A quantitative relationship between diesel soot oxidation rate and oxidation temperature and oxygen partial pressure was investigated by burning the diesel exhaust soot particles in a controlled flat flame supplied with methane/air/oxygen/nitrogen mixtures. The oxidation temperature and the oxygen partial pressure were controlled in the ranges of 1530 to 1820 K and 0.01 to 0.05 atm (1atm = 1.01325 bar) respectively. Soot particle size distribution measurements were achieved with transmission electron microscopy (TEM) for particle samples that were collected on copper grids at different positions along the flame centerline. Oxidation periods were determined by means of laser Doppler anemometry (LDA). The experimental results showed that the experimental oxidation rates fall between the values predicted by the Nagle and Strickland-Constable formula and those by the Lee formula.
Technical Paper

Effects of EGR on Heat Release in Diesel Combustion

1998-02-23
980184
The effects of Exhaust Gas Recirculation (EGR) on diesel engine exhaust emissions were isolated and studied in earlier investigations (1,2,3,4,5). This paper analyses the heat release patterns during the combustion process and co-relates the results with the exhaust emissions. The EGR effects considered include the dilution of the inlet charge with CO2 or water vapour, the increase in the inlet charge temperature, and the thermal throttling arising from the use of hot EGR. The use of diluents (CO2 and H2O), which are the principal constituents of EGR, caused an increase in ignition delay and a shift in the location of start of combustion. As a consequence of this shift, the whole combustion process was also shifted further towards the expansion stroke. This resulted in the products of combustion spending shorter periods at high temperatures which lowered the NOx formation rate.
Technical Paper

Flame Propagation and Laminar Burning Velocity Measurements in a Cylindrical Combustion Chamber Using Particle Image Velocimetry

1995-10-01
952458
Particle Image Velocimetry (PIV) has been used to investigate flame propagation and unburned gas velocity fields within an optically accessed cylindrical combustion chamber. The flame propagation process and the flame structure of the quiescent and swirling flow inside the chamber is presented. An ionisation probe technique and also a nonintrusive laser refraction technique were used to determine the local flame speed in conjunction with the PIV measurement. The laminar burning velocity of quiescent propane-air mixtures initially at atmospheric condition for different equivalence ratios ranging from 0.7 - 1.4 were measured. These were determined directly from the difference between the local flame propagation speed and the unburned gas velocity immediately ahead of the flame front. Close agreement with other measurements and predicted results was found.
Technical Paper

Measurement of Residual Gas Fraction in a Single Cylinder HSDI Diesel Engine through Skip-firing

2009-06-15
2009-01-1961
This paper proposes a method of determining residual gas fraction (RGF) by sampling the CO2 concentration in the exhaust manifold of a single cylinder HSDI diesel engine. During a skip-fire event, the CO2 concentration in the exhaust gas for the last firing cycle and the subsequent motoring cycle were measured using a fast-response emissions analyzer. The ratios of these two values are shown to be indicative of the RGF. To simulate the increase in exhaust pressure found with EGR or aftertreatment systems, the exhaust back pressure was elevated using an exhaust throttle. The intake pressure was held constant over a range of engine speed and load conditions. The results demonstrate that the RGF increases linearly with increasing exhaust back pressures for all engine operating conditions.
Technical Paper

Modelling and Measurements from a Natural Gas Fuelled Engine

1993-03-01
930927
A programme of work is being undertaken to improve the performance of a spark-ignited natural gas engine, that has been converted from a diesel engine. The aim of this work is to reduce the fuel consumption and NOx emissions. All experimental data and predictions refer to full throttle operation at 1500 rpm. The work to be reported here will include baseline tests that have been used to calibrate a two-zone combustion model. Particularly important are the predictions of the NOx emissions. The simulation has then been used to predict the effects of using: a higher compression ratio, and a faster burn combustion system. The design philosophy of the resulting fast burn combustion system is discussed, and some preliminary results are presented. There will be a discussion of the ignition parameters that affect the lean burn operation, and the effect of the spark plug gap position is discussed in the context of results from a phenomenological model of turbulent combustion.
Technical Paper

Motored SI IC Engine In-Cylinder Flow Field Measurement Using Time Resolved Digital PIV for Characterisation of Cyclic Variation

2006-04-03
2006-01-1044
Time resolved digital particle image velocimetry (TRDPIV) data is presented for the in-cylinder flow field of a motored four stroke multi-valve direct injection spark ignition (DISI) optical internal combustion (IC) engine. It is widely accepted that IC engine performance, in terms of both engine emissions and efficiency, is fundamentally affected by the in-cylinder air motion. Therefore improved knowledge of the fundamental fluid flow processes present during the intake and compression phase of the engine cycle is required. More specifically, increased understanding of the flow field cyclic variation will facilitate accurate control of the mixing and ignition development. This paper highlights the application of a new TRDPIV system to provide both spatial and temporal in-cylinder flow field development over multiple engine cycles for improved understanding of cyclic variation.
Technical Paper

Numerical Investigation of Real-World Gasoline Car Drive-Cycle Fuel Economy and Emissions

2004-03-08
2004-01-0635
This paper investigates an approach to modelling real-world drive cycles for the prediction of fuel economy and emission levels. It demonstrates that a steady-state engine performance data based modelling approach can be used for real-world drive cycle simulation. It identifies and demonstrates that a steady-state performance data-based approach is the only current viable approach for real-world tailpipe-out CO level predictions. It also identifies quantitatively the difference between the modal emission measurements and constant volume sampling (CVS) bag values for emission modelling validation. A systematic validation and sensitivity analysis of the modelling approach is also described.
Technical Paper

Particle Image Velocimetry Measurements of Barrel Swirl in a Production Geometry Optical IC Engine

1994-03-01
940281
Particle Image Velocimetry (PIV) here has been used to measure the instantaneous velocity field within a realistic geometry motored single cylinder engine. Through-the-piston-crown illumination of a vertical plane bisecting the inlet and exhaust valves in a four valve pent roof combustion chamber and the use of a corrective optical system has for the first time allowed the velocity field in a vertical plane within a cylindrical bore to be quantified with PIV. Techniques are described which permit accurate and repeatable camera focusing, laser to engine synchronisation and seeding density control. Large scale motion observed at 180° ATDC has been interpreted as barrel swirl. Limitations of the current technique are discussed with respect to general in-cylinder applications.
Technical Paper

Single Cylinder Motored SI IC Engine Intake Runner Flow Measurement Using Time Resolved Digital Particle Image Velocimetry

2006-04-03
2006-01-1043
Time resolved intake runner flow field data is presented for a motored single cylinder four stroke, direct injection spark ignition (DISI) optical internal combustion (IC) engine with an optically accessible intake runner. Previous studies have shown the fundamental influence in-cylinder air motion has on engine performance, exhibiting a controlling factor on the mixing process and early flame kernel development. An improved understanding of the in-cylinder flow fields during the intake and compression process leading up to ignition is required. However, knowledge of the intake runner flow field during the intake phase of the engine cycle is required to establish the effect of intake runner flow variation on in-cylinder flow field development. This paper presents the use of a new time resolved digital particle image velocimetry system within the intake runner to study runner flows and their variation over many engine cycles.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 1: Effect of Reducing Inlet Charge Oxygen

1996-05-01
961165
This is a first of a series of papers describing how the replacement of some of the inlet air with EGR modifies the diesel combustion process and thereby affects the exhaust emissions. This paper deals with only the reduction of oxygen in the inlet charge to the engine (dilution effect). The oxygen in the inlet charge to a direct injection diesel engine was progressively replaced by inert gases, whilst the engine speed, fuelling rate, injection timing, total mass and the specific heat capacity of the inlet charge were kept constant. The use of inert gases for oxygen replacement, rather than carbon dioxide (CO2) or water vapour normally found in EGR, ensured that the effects on combustion of dissociation of these species were excluded. In addition, the effects of oxygen replacement on ignition delay were isolated and quantified.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 2: Effects of Carbon Dioxide

1996-05-01
961167
This is the second of a series of papers on how exhaust gas recirculation (EGR) affects diesel engine combustion and emissions. It concentrates on the effects of carbon dioxide (CO2) which is a principal constituent of EGR. Results are presented from a number of tests during which the nitrogen or oxygen in the engine inlet air was progressively replaced by CO2 and/or inert gases, whilst the engine speed, fuelling rate, injection timing, inlet charge total mass rate and inlet charge temperature were kept constant. In one set of tests, some of the nitrogen in the inlet air was progressively replaced by a carefully controlled mixture of CO2 and argon. This ensured that the added gas mixture had equal specific heat capacity to that of the nitrogen being replaced. Thus, the effects of dissociated CO2 on combustion and emissions could be isolated and quantified (chemical effect).
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions - Part 3: Effects of Water Vapour

1997-05-01
971659
Water vapour is a main constituent of exhaust gas recirculation (EGR) in diesel engines and its influence on combustion and emissions were investigated. The following effects of the water vapour were examined experimentally: the effect of replacing part of the inlet charge oxygen (dilution effect), the effect of the higher specific heat capacity of water vapour in comparison with that of oxygen it replaces (thermal effect), the effect of dissociation of water vapour (chemical effect), as well as the overall effect of water vapour on combustion and emissions. Water vapour was introduced into the inlet charge, progressively, so that up to 3 percent of the inlet charge mass was displaced. This was equivalent to the amount of water vapour contained in 52 percent by mass of EGR for the engine operating condition tested in this work.
Technical Paper

The Dilution, Chemical, and Thermal Effects of Exhaust Gas Recirculation on Disesel Engine Emissions - Part 4: Effects of Carbon Dioxide and Water Vapour

1997-05-01
971660
This paper deals with the effects on diesel engine combustion and emissions of carbon dioxide and water vapour the two main constituents of EGR. It concludes the work covered in Parts 1, 2, and 3 of this series of papers. A comparison is presented of the different effects that each of these constituents has on combustion and emissions. The comparison showed that the dilution effect was the most significant one. Furthermore, the dilution effect for carbon dioxide is higher than that for water vapour because EGR has roughly twice as much carbon dioxide than water vapour. On the other hand, the water vapour had a higher thermal effect in comparison to that of carbon dioxide due to the higher specific heat capacity of water vapour. The chemical effect of carbon dioxide was, generally, higher than that of water vapour.
Technical Paper

The Effect of EGR on Diesel Engine Wear

1999-03-01
1999-01-0839
As part of an ongoing programme of Exhaust Gas Recirculation (EGR) wear investigations, this paper reports a study into the effect of Exhaust Gas Recirculation, and a variety of interacting factors, on the wear rate of the top piston ring and the liner top ring reversal point on a 1.0 litre/cylinder medium duty four cylinder diesel engine. Thin Layer Activation (TLA - also known as Surface Layer Activation in the US) has been used to provide individual wear rates for these components when engine operating conditions have been varied. The effects of oil condition, EGR level, fuel sulphur content and engine coolant temperature have been investigated at one engine speed at full load. The effects of engine load and uncooled EGR have also been assessed. The effects of these parameters on engine wear are presented and discussed. When EGR was applied a significant increase in wear was observed at EGR levels of between 10% and 15%.
Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

The HOTFIRE Homogeneous GDI and Fully Variable Valve Train Project - An Initial Report

2006-04-03
2006-01-1260
There is a great deal of interest in new technologies to assist in reducing the CO2 output of passenger vehicles, as part of the drive to meet the limits agreed by the EU and the European Automobile Manufacturer's Association ACEA, itself a result of the Kyoto Protocol. For the internal combustion engine, the most promising of these include gasoline direct injection, downsizing and fully variable valve trains. While new types of spray-guided gasoline direct injection (GDI) combustion systems are finally set to yield the level of fuel consumption improvement which was originally promised for the so-called ‘first generation’ wall- and air-guided types of GDI, injectors for spray-guided combustion systems are not yet in production to help justify the added complication and cost of the NOx trap necessary with a stratified combustion concept.
Journal Article

The Impact of Saturated and Unsaturated Fuel Molecules on Diesel Combustion and Exhaust Emissions

2011-08-30
2011-01-1922
Diesel fuels usually comprise a wide range of compounds having different molecular structures which can affect both the fuel's physical properties and combustion characteristics. In future, as synthetic fuels from fossil and sustainable sources become increasingly available, it could be possible to control the fuel's molecular structure to achieve clean and efficient combustion. This paper presents experimental results of combustion and emissions studies undertaken on a single cylinder diesel engine supplied with 18 different fuels each comprising a single, acyclic, non-oxygenated hydrocarbon molecule. These molecules were chosen to highlight the effect of straight carbon chain length, degree of saturation and the addition of methyl groups as branches to a straight carbon chain.
Technical Paper

The Measurement and Analysis of Swirl in Steady Flow

1992-09-01
921642
The influence of swirl on combustion in diesel and spark ignition engines is reviewed briefly, and this leads to a resumé of the swirl measuring techniques. The numerous ways of analysing swirl data are summarised and the relations between the different swirl parameters are presented. Experimental results are presented from a diesel engine in which the flow has been measured by a hot wire anemometer, a paddle wheel and a swirl torquemeter. The performance of the different measurement techniques is compared. Further results are presented (from a spark ignition engine) which illustrate the influence of the inlet port, manifold and entry conditions on the swirl measurements. Integration techniques are reviewed for producing a single swirl parameter to characterise the combined performance of the inlet port, valve and camshaft. Finally, the difficulty in standardising measurements of barrel swirl are discussed.
X