Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Comparison of the Bosch and Zuech Rate of Injection Meters

1991-02-01
910724
This paper will discuss the fundamentals of the Bosch rate of injection meter which has been the standard measurement tool for the last 25 years and a newly developed tool which uses the Zuech constant volume technique. A fundamental and experimental comparison is presented. Using a high pressure accumulator type injector, each of the injection systems produced almost identical injection rate shapes. The integrated values of these traces (injection quantity) were within a few percent of the physically measured quantities.
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Journal Article

A Detailed Comparison of Emissions and Combustion Performance Between Optical and Metal Single-Cylinder Diesel Engines at Low Temperature Combustion Conditions

2008-04-14
2008-01-1066
A detailed comparison of cylinder pressure derived combustion performance and engine-out emissions is made between an all-metal single-cylinder light-duty diesel engine and a geometrically equivalent engine designed for optical accessibility. The metal and optically accessible single-cylinder engines have the same nominal geometry, including cylinder head, piston bowl shape and valve cutouts, bore, stroke, valve lift profiles, and fuel injection system. The bulk gas thermodynamic state near TDC and load of the two engines are closely matched by adjusting the optical engine intake mass flow and composition, intake temperature, and fueling rate for a highly dilute, low temperature combustion (LTC) operating condition with an intake O2 concentration of 9%. Subsequent start of injection (SOI) sweeps compare the emissions trends of UHC, CO, NOx, and soot, as well as ignition delay and fuel consumption.
Technical Paper

Aldehyde and Unburned Fuel Emission Measurements from a Methanol-Fueled Texaco Stratified Charge Engine

1985-10-01
852120
A Texaco L-163S TCCS (Texaco Controlled Combustion System) engine was operated with pure methanol to investigate the origin and mechanism of unburned fuel (UBF) and formaldehyde emissions. The effects of engine load, speed and coolant temperature on the exhaust emissions were studied using both continuous and time-resolved sampling methods. Within the range studied, increasing the engine load resulted in a decrease of the exhaust UBF emissions and an increase in the formaldehyde emissions. Engine speed had little effect on both UBF and formaldehyde emissions. Decreasing the engine coolant temperature from 85°C to 45°C caused the exhaust UBF emissions to approximately double and the formaldehyde emission to increase approximately 20 percent. It is hypothesized that both fuel impingement and spray tailing are responsible for the high UBF emissions. In-cylinder formation of formaldehyde was found to be the major source of the exhaust aldehyde emissions in this experiment.
Technical Paper

An Analysis of Ignition Delay, Heat Transfer and Combustion During Dynamic Load Changes in a Diesel Engine

1989-09-01
892054
In this paper we report the results of experiments done during the transient operation of a single cylinder Cummins NH engine. The data taken include cycle resolved pressure, combustion chamber surface temperatures and ignition delay. The data was taken during a special type of engine operation in which the engine was repeatedly hopped from one load to another. In this way cycle to cycle variations could be averaged out by ensemble averaging individual cycles after the step load change. For analysis of the heat transfer a unique finite difference temperature probe was developed to delineate the 3-D heat transfer effects in place of the standard 1-D assumptions and a new analysis technique was developed to calculate the instantaneous heat flux during the transient. Analysis of the data indicates that the combustion reaches an equivalent steady state condition within 2000 engine cycles after the load change.
Technical Paper

An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics

2002-10-21
2002-01-2830
A single cylinder CFR research engine has been run in HCCI combustion mode for a range of temperatures and fuel compositions. The data indicate that the best HCCI operation, as measured by a combination of successful combustion with low ISFC, occurs at or near the rich limit of operation. Analysis of the pressure and heat release histories indicated the presence, or absence, and impact of the fuel's NTC ignition behavior on establishing successful HCCI operation. The auto-ignition trends observed were in complete agreement with previous results found in the literature. Furthermore, analysis of the importance of the fuel's octane sensitivity, through assessment of an octane index, successfully explained the changes in the fuels auto-ignition tendency with changes in engine operating conditions.
Technical Paper

Chemiluminescence Measurements of Homogeneous Charge Compression Ignition (HCCI) Combustion

2006-04-03
2006-01-1520
A spectroscopic diagnostic system was designed to study the effects of different engine parameters on the chemiluminescence characteristic of HCCI combustion. The engine parameters studied in this work were intake temperature, fuel delivery method, fueling rate (load), air-fuel ratio, and the effect of partial fuel reforming due to intake charge preheating. At each data point, a set of time-resolved spectra were obtained along with the cylinder pressure and exhaust emissions data. It was determined that different engine parameters affect the ignition timing of HCCI combustion without altering the reaction pathways of the fuel after the combustion has started. The chemiluminescence spectra of HCCI combustion appear as several distinct peaks corresponding to emission from CHO, HCHO, CH, and OH superimposed on top of a CO-O continuum. A strong correlation was found between the chemiluminescence light intensity and the rate of heat release.
Technical Paper

Comparison of HCCI Operating Ranges for Combinations of Intake Temperature, Engine Speed and Fuel Composition

2002-06-03
2002-01-1924
A series of engine experiments have been performed to explore the impact intake temperature, engine speed and fuel composition on the HCCI operating range of a CFR engine. The experimental matrix covers a range of engine speeds 600 - 2000 RPM), intake temperatures (300 K - 400 K), and four different fuels. Three of the fuels had different chemical composition but had equivalent research octane numbers of 91.8. The fourth fuel, a blend of primary reference fuels had a research octane number of 70. The acceptable HCCI operating range of the engine was defined through two criteria; the rate of pressure rise needed to be less than 10 MPa per crank angle and the covariance of the indicated mean effective pressure needed to be less than 10 percent. Using these limits the HCCI operating range for the engine was evaluated for the experimental matrix. Data for emissions, and fuel consumption as well as in-cylinder pressure were recorded.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Computations of a Two-Stroke Engine Cylinder and Port Scavenging Flows

1991-02-01
910672
A modification of the computational fluid dynamics code KIVA-II is presented that allows computations to be made in complex engine geometries. An example application is given in which three versions of KIVA-II are run simultaneously. Each version considers a separate block of the computational domain, and the blocks exchange boundary condition information with each other at their common interfaces. The use of separate blocks permits the connectedness of the overall computational domain to change with time. The scavenging flow in the cylinder, transfer pipes (ports), and exhaust pipe of a ported two-stroke engine with a moving piston was modeled in this way. Results are presented for three engine designs that differ only in the angle of their boost ports. The calculated flow fields and the resulting fuel distributions are shown to be markedly different with the different geometries.
Technical Paper

Data from a Variable Rate Shape High Pressure Injection System Operating in an Engine Fed Constant Volume Combustion Chamber

1990-10-01
902082
In current systems, for a given nozzle and injection pressure (pump speed), the shape of the injection rate is fixed and the injection timing is the only variable the engine designer can vary. For this non-interactive injection system, changing the injector nozzle (number and diameter of holes) will proportionately change the injection shape. New injection systems in which the rate of injection is a controlled variable are being developed. Results from one such injector, called the UCORS (Universal Combustion Optimization and Rate Shaping), are reported in this paper. The system can dynamically control its injection rate shape by controlling the position and size of a pilot injection relative to the main injection. Data and analysis from an out-of-engine and combustion chamber study of the UCORS injection system are presented.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Technical Paper

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

2011-09-11
2011-24-0062
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy. The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation.
Technical Paper

Effects of Oxygen Enhancement on the Emissions from a DI Diesel via Manipulation of Fuels and Combustion Chamber Gas Composition

2000-03-06
2000-01-0512
Oxygen enhancement in a direct injection (DI) diesel engine was studied to investigate the potential for particulate matter and NOx emissions control. The local oxygen concentration within the fuel plume was modified by oxygen enrichment of the intake air and by oxygenating the base fuel with 20% methyl t-butyl ether (MTBE). The study collected overall engine performance and engine-out emissions data as well as in-cylinder two-color measurements at 25% and 75% loads over a range of injection timings. The study found oxygen enhancement, whether it be from intake air enrichment or via oxygenated fuels, reduces particulate matter, the effectiveness depending on the local concentration of oxygen in the fuel plume. Since NOx emissions depend strongly on the temperature and oxygen concentration throughout the bulk cylinder gas, the global thermal and dilution effects from oxygen enrichment were greater than that from operation on oxygenated fuel.
Technical Paper

Ethanol Fumigation of a Turbocharged Diesel Engine

1981-04-01
810680
Ethanol has been injected through an atomizing nozzle into the intake manifold of a four cylinder turbocharged diesel engine. It was found that to avoid liquid droplet impingement on the compressor blades the injector needed to be located downstream of the compressor, in the high pressure section of the inlet manifold. 160 proof and 200 proof alcohols were investigated with a series of percentage substitutions at different speeds and loads. The fumigation of ethanol resulted in a slight improvement in thermal efficiency at high loads and a small reduction at light loads. The ignition delay and rate of pressure rise also increased significantly when ethanol was added to the engine. A change in the proof of ethanol from 160 to 200 did not produce any noticeable change in engine performance. Emission measurements were also made and are discussed. The problem of obtaining uniform cylinder to cylinder distribution of alcohol has been encountered.
Technical Paper

Expanding the HCCI Operation With the Charge Stratification

2004-03-08
2004-01-1756
A single cylinder CFR research engine has been run in HCCI combustion mode at the rich and the lean limits of the homogeneous charge operating range. To achieve a variation of the degree of charge stratification, two GDI injectors were installed: one was used for generating a homogeneous mixture in the intake system, and the other was mounted directly into the side of the combustion chamber. At the lean limit of the operating range, stratification showed a tremendous improvement in IMEP and emissions. At the rich limit, however, the stratification was limited by the high-pressure rise rate and high CO and NOx emissions. In this experiment the location of the DI injector was in such a position that the operating range that could be investigated was limited due to liquid fuel impingement onto the piston and liner.
Technical Paper

Experimental Investigation into the Effects of Direct Fuel Injection During the Negative Valve Overlap Period in an Gasoline Fueled HCCI Engine

2007-04-16
2007-01-0219
A single cylinder Yamaha research engine was operated with gasoline HCCI combustion using negative valve overlap (NVO). The injection strategy for this study involved using fuel injected directly into the cylinder during the NVO period (pre-DI) along with a secondary injection either in the intake port (PI) or directly into the cylinder (DI). The effects of timing of the pre-DI injection along with the percent of fuel injected during the pre-DI injection were studied in two sets of experiments using secondary PI and DI injections in separate experiments. Results have shown that by varying the pre-DI timing and pre-DI percent the main HCCI combustion timing can be influenced as a result of varied heat release during the negative valve overlap period along with hypothesized varied degrees of reformation of the pre-DI injected fuel. In addition to varying the main combustion timing the ISFC, emissions and combustion stability are all influenced by changes in pre-DI timing and percent.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Technical Paper

Experimental and Computational Assessment of Inlet Swirl Effects on a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2014-04-01
2014-01-1299
The light-medium load operating regime (4-8 bar net IMEP) presents many challenges for advanced low temperature combustion strategies (e.g. HCCI, PPC) in light-duty, high speed engines. In this operating regime, lean global equivalence ratios (Φ<0.4) present challenges with respect to autoignition of gasoline-like fuels. Considering this intake temperature sensitivity, the objective of this work was to investigate, both experimentally and computationally, gasoline compression ignition (GCI) combustion operating sensitivity to inlet swirl ratio (Rs) variations when using a single fuel (87-octane gasoline) in a 0.475-liter single-cylinder engine based on a production GM 1.9-liter high speed diesel engine. For the first part of this investigation, an experimental matrix was developed to determine how changing inlet swirl affected GCI operation at various fixed load and engine speed operating conditions (4 and 8 bar net IMEP; 1300 and 2000 RPM).
X