Refine Your Search

Topic

Search Results

Technical Paper

A Comparison of the Bosch and Zuech Rate of Injection Meters

1991-02-01
910724
This paper will discuss the fundamentals of the Bosch rate of injection meter which has been the standard measurement tool for the last 25 years and a newly developed tool which uses the Zuech constant volume technique. A fundamental and experimental comparison is presented. Using a high pressure accumulator type injector, each of the injection systems produced almost identical injection rate shapes. The integrated values of these traces (injection quantity) were within a few percent of the physically measured quantities.
Technical Paper

A Computational Investigation into the Cool Flame Region in HCCI Combustion

2004-03-08
2004-01-0552
Multi-dimensional computational efforts using comprehensive and skeletal kinetics have been made to investigate the cool flame region in HCCI combustion. The work was done in parallel to an experimental study that showed the impact of the negative temperature coefficient and the cool flame on the start of combustion using different fuels, which is now the focus of the simulation work. Experiments in a single cylinder CFR research engine with n-butane and a primary reference fuel with an octane number of 70 (PRF 70) were modeled. A comparison of the pressure and heat release traces of the experimental and computational results shows the difficulties in predicting the heat release in the cool flame region. The behavior of the driving radicals for two-stage ignition is studied and is compared to the behavior for a single-ignition from the literature. Model results show that PRF 70 exhibits more pronounced cool flame heat release than n-butane.
Technical Paper

A Study of Fuel Nitrogen Conversion, Performance, and Emission Characteristcs of Blended SCR-II in a High-Speed Diesel Engine

1981-02-01
810251
Engine operation with blended SRC-II and pyridine doped diesel fuel were compared relative to regular #2 diesel fuel in a 4-stroke, turbocharged, direct injection, high speed commercial diesel engine. The brake specific fuel consumption, (M-Joule/hp-hr), turbocharging, combustion characteristics and smoke did not change between blended SRC-II and regular #2 diesel fuel. This was expected since the sample fuels were blended to be of the same cetane number. The maximum torque, hydrocarbon and NOx emissions were higher for blended SRC-II. There was essentially no difference in the NOx measurements of the pyridine doped fuel and regular #2 diesel fuel. The NOx emission increase for the blended SRC-II is believed to be caused by the increased aromatic content of the blended SRC-II and not the fuel nitrogen conversion.
Technical Paper

Aldehyde and Unburned Fuel Emission Measurements from a Methanol-Fueled Texaco Stratified Charge Engine

1985-10-01
852120
A Texaco L-163S TCCS (Texaco Controlled Combustion System) engine was operated with pure methanol to investigate the origin and mechanism of unburned fuel (UBF) and formaldehyde emissions. The effects of engine load, speed and coolant temperature on the exhaust emissions were studied using both continuous and time-resolved sampling methods. Within the range studied, increasing the engine load resulted in a decrease of the exhaust UBF emissions and an increase in the formaldehyde emissions. Engine speed had little effect on both UBF and formaldehyde emissions. Decreasing the engine coolant temperature from 85°C to 45°C caused the exhaust UBF emissions to approximately double and the formaldehyde emission to increase approximately 20 percent. It is hypothesized that both fuel impingement and spray tailing are responsible for the high UBF emissions. In-cylinder formation of formaldehyde was found to be the major source of the exhaust aldehyde emissions in this experiment.
Technical Paper

An Investigation Into the Effect of Fuel Composition on HCCI Combustion Characteristics

2002-10-21
2002-01-2830
A single cylinder CFR research engine has been run in HCCI combustion mode for a range of temperatures and fuel compositions. The data indicate that the best HCCI operation, as measured by a combination of successful combustion with low ISFC, occurs at or near the rich limit of operation. Analysis of the pressure and heat release histories indicated the presence, or absence, and impact of the fuel's NTC ignition behavior on establishing successful HCCI operation. The auto-ignition trends observed were in complete agreement with previous results found in the literature. Furthermore, analysis of the importance of the fuel's octane sensitivity, through assessment of an octane index, successfully explained the changes in the fuels auto-ignition tendency with changes in engine operating conditions.
Technical Paper

Comparison of HCCI Operating Ranges for Combinations of Intake Temperature, Engine Speed and Fuel Composition

2002-06-03
2002-01-1924
A series of engine experiments have been performed to explore the impact intake temperature, engine speed and fuel composition on the HCCI operating range of a CFR engine. The experimental matrix covers a range of engine speeds 600 - 2000 RPM), intake temperatures (300 K - 400 K), and four different fuels. Three of the fuels had different chemical composition but had equivalent research octane numbers of 91.8. The fourth fuel, a blend of primary reference fuels had a research octane number of 70. The acceptable HCCI operating range of the engine was defined through two criteria; the rate of pressure rise needed to be less than 10 MPa per crank angle and the covariance of the indicated mean effective pressure needed to be less than 10 percent. Using these limits the HCCI operating range for the engine was evaluated for the experimental matrix. Data for emissions, and fuel consumption as well as in-cylinder pressure were recorded.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Data from a Variable Rate Shape High Pressure Injection System Operating in an Engine Fed Constant Volume Combustion Chamber

1990-10-01
902082
In current systems, for a given nozzle and injection pressure (pump speed), the shape of the injection rate is fixed and the injection timing is the only variable the engine designer can vary. For this non-interactive injection system, changing the injector nozzle (number and diameter of holes) will proportionately change the injection shape. New injection systems in which the rate of injection is a controlled variable are being developed. Results from one such injector, called the UCORS (Universal Combustion Optimization and Rate Shaping), are reported in this paper. The system can dynamically control its injection rate shape by controlling the position and size of a pilot injection relative to the main injection. Data and analysis from an out-of-engine and combustion chamber study of the UCORS injection system are presented.
Technical Paper

Detailed Diesel Exhaust Particulate Characterization and Real-Time DPF Filtration Efficiency Measurements During PM Filling Process

2007-04-16
2007-01-0320
An experimental study was performed to investigate diesel particulate filter (DPF) performance during filtration with the use of real-time measurement equipment. Three operating conditions of a single-cylinder 2.3-liter D.I. heavy-duty diesel engine were selected to generate distinct types of diesel particulate matter (PM) in terms of chemical composition, concentration, and size distribution. Four substrates, with a range of geometric and physical parameters, were studied to observe the effect on filtration characteristics. Real-time filtration performance indicators such as pressure drop and filtration efficiency were investigated using real-time PM size distribution and a mass analyzer. Types of filtration efficiency included: mass-based, number-based, and fractional (based on particle diameter). In addition, time integrated measurements were taken with a Rupprecht & Patashnick Tapered Element Oscillating Microbalance (TEOM), Teflon and quartz filters.
Journal Article

Detailed Unburned Hydrocarbon Investigations in a Highly-Dilute Diesel Low Temperature Combustion Regime

2009-04-20
2009-01-0928
The objective of this research is a detailed investigation of unburned hydrocarbon (UHC) in a highly-dilute diesel low temperature combustion (LTC) regime. This research concentrates on understanding the mechanisms that control the formation of UHC via experiments and simulations in a 0.48L signal-cylinder light duty engine operating at 2000 r/min and 5.5 bar IMEP with multiple injections. A multi-gas FTIR along with other gas and smoke emissions instruments are used to measure exhaust UHC species and other emissions. Controlled experiments in the single-cylinder engine are then combined with three computational tools, namely heat release analysis of measured cylinder pressure, analysis of spray trajectory with a phenomenological spray model using in-cylinder thermodynamics [1], and KIVA-3V Chemkin CFD computations recently tested at LTC conditions [2].
Technical Paper

Effects of Low Pressure EGR on Transient Air System Performance and Emissions for Low Temperature Diesel Combustion

2011-09-11
2011-24-0062
Low pressure EGR offers greater effectiveness and flexibility for turbocharging and improved heat transfer compared to high pressure EGR systems. These characteristics have been shown to provide potential for further NOx, soot, and fuel consumption reductions in modern diesel engines. One of the drawbacks is reduced transient response capability due to the long EGR path. This can be largely mitigated by combining low pressure and high pressure loops in a hybrid EGR system, but the changes in transient response must be considered in the design of an effective control strategy. The effect of low pressure EGR on transient emissions was evaluated using two different combustion strategies over a variety of transient events. Low pressure EGR was found to significantly lengthen the response time of intake oxygen concentration following a transient event, which can have a substantial effect on emissions formation.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Technical Paper

Experimental and Computational Assessment of Inlet Swirl Effects on a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2014-04-01
2014-01-1299
The light-medium load operating regime (4-8 bar net IMEP) presents many challenges for advanced low temperature combustion strategies (e.g. HCCI, PPC) in light-duty, high speed engines. In this operating regime, lean global equivalence ratios (Φ<0.4) present challenges with respect to autoignition of gasoline-like fuels. Considering this intake temperature sensitivity, the objective of this work was to investigate, both experimentally and computationally, gasoline compression ignition (GCI) combustion operating sensitivity to inlet swirl ratio (Rs) variations when using a single fuel (87-octane gasoline) in a 0.475-liter single-cylinder engine based on a production GM 1.9-liter high speed diesel engine. For the first part of this investigation, an experimental matrix was developed to determine how changing inlet swirl affected GCI operation at various fixed load and engine speed operating conditions (4 and 8 bar net IMEP; 1300 and 2000 RPM).
Technical Paper

Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine

2007-04-16
2007-01-0193
There is a significant global effort to study low temperature combustion (LTC) as a tool to achieve stringent emission standards with future light duty diesel engines. LTC utilizes high levels of dilution (i.e., EGR > 60% with <10%O2 in the intake charge) to reduce overall combustion temperatures and to lengthen ignition delay, This increased ignition delay provides time for fuel evaporation and reduces in-homogeneities in the reactant mixture, thus reducing NOx formation from local temperature spikes and soot formation from locally rich mixtures. However, as dilution is increased to the limits, HC and CO can significantly increase. Recent research suggests that CO emissions during LTC result from the incomplete combustion of under-mixed fuel and charge gas occurring after the premixed burn period [1, 2]1. The objective of the present work was to increase understanding of the HC/CO emission mechanisms in LTC at part-load.
Technical Paper

Investigation of the Characteristics of a High Pressure Injector

1989-09-01
892101
This paper will focus on the spray characteristics of a high pressure (up to 155 MPa) accumulator type injector in a high pressure (chosen density) quiescent spray chamber. The injector uses a standard single orifice nozzle which produces a full cone spray. Using this apparatus, we are examining the fundamental aspects of high pressure spray formation under controlled conditions. Experimental data was collected using high speed photography (10,000 frames per second) which used a pulsed copper-vapor laser as a light source. Two photographic techniques are being utilized. Direct attenuation allows measurement of tip penetration, spray cone angle, and injection duration. Scattering from a sheet of laser light perpendicular to the camera field of view is being developed in an attempt to resolve inner spray cone structure. In addition to the quantitative data from the high speed photography, injector accumulator pressure, supply pressure and injection rate histories were recorded.
Technical Paper

Investigation of the Effects of Cetane Number, Volatility, and Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion

2010-04-12
2010-01-0337
The objective of this study is to increase fundamental understanding of the effects of fuel composition and properties on low temperature combustion (LTC) and to identify major properties that could enable engine performance and emission improvements, especially under high load conditions. A series of experiments and computational simulations were conducted under LTC conditions using 67% EGR with 9.5% inlet O₂ concentration on a single-cylinder version of the General Motors Corporation 1.9L direct injection diesel engine. This research investigated the effects of Cetane number (CN), volatility and total aromatic content of diesel fuels on LTC operation. The values of CN, volatility, and total aromatic content studied were selected in a DOE (Design of Experiments) fashion with each variable having a base value as well as a lower and higher level. Timing sweeps were performed for all fuels at a lower load condition of 5.5 bar net IMEP at 2000 rpm using a single-pulse injection strategy.
Journal Article

Micro-scale Study of DPF Permeability as a Function of PM Loading

2011-04-12
2011-01-0815
An investigation of the permeability evolution of a diesel particulate filter channel wall as a function of soot loading was conducted. This investigation examined the effects of varying particle characteristics and two filtration velocities (4 and 8 cm/s) on the wall permeability throughout a 1 g/L soot loading. This study was possible using the Diesel Exhaust Filtration Analysis (DEFA) system that was modified to perform temperature controlled in-situ flow tests. The DEFA system allows for isolation of the pressure drop due to the filter wall and soot cake layer greatly simplifying the permeability calculation. Permeability evolution fundamentals and the effects of loading conditions were studied by filling 18 filters with the DEFA system. The filters were loaded using one of four operating conditions of a single-cylinder heavy-duty diesel engine. These operating conditions were comprehensively characterized giving insight into the effects of varying particle characteristics.
Technical Paper

Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model

2005-04-11
2005-01-0121
Low-temperature combustion concepts that utilize cooled EGR, early/retarded injection, high swirl ratios, and modest compression ratios have recently received considerable attention. To understand the combustion and, in particular, the soot formation process under these operating conditions, a modeling study was carried out using the KIVA-3V code with an improved phenomenological soot model. This multi-step soot model includes particle inception, surface growth, surface oxidation, and particle coagulation. Additional models include a piston-ring crevice model, the KH/RT spray breakup model, a droplet wall impingement model, a wall heat transfer model, and the RNG k-ε turbulence model. The Shell model was used to simulate the ignition process, and a laminar-and-turbulent characteristic time combustion model was used for the post-ignition combustion process.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Journal Article

Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime

2011-04-12
2011-01-1182
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline (termed GDICI for Gasoline Direct-Injection Compression Ignition) in the low temperature combustion (LTC) regime is presented. As an aid to plan engine experiments at full load (16 bar IMEP, 2500 rev/min), exploration of operating conditions was first performed numerically employing a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion. Operation ranges of a light-duty diesel engine operating with GDICI combustion with constraints of combustion efficiency, noise level (pressure rise rate) and emissions were identified as functions of injection timings, exhaust gas recirculation rate and the fuel split ratio of double-pulse injections.
X