Refine Your Search

Topic

Search Results

Technical Paper

0D Modeling of Real-Driving NOx Emissions for a Diesel Passenger Vehicle

2018-09-10
2018-01-1761
NOx emissions from diesel passenger vehicles affect the atmospheric environment. It is difficult to evaluate the NOx emissions influenced by environmental conditions such as humidity and temperature, traffic conditions, driving patterns, etc. In the authors’ previous study, real-driving experiments were performed on city and highway routes using a diesel passenger car with only an exhaust gas recirculation system. A statistical prediction model of NOx emissions was considered for simple estimations in the real world using instantaneous vehicle data measured by the portable emissions measurement system and global positioning system. The prediction model consisted of explanatory variables, such as velocity, acceleration, road gradient, and position of transmission gear. Using the explanatory variables, NOx emissions on the city and highway routes was well predicted using a diesel vehicle without NOx reduction devices.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
Technical Paper

A Study of High Compression Ratio SI Engine Equipped with a Variable Piston Crank Mechanism for Knocking Mitigation

2011-08-30
2011-01-1874
To avoid knocking phenomena, a special crank mechanism for gasoline engine that allowed the piston to move rapidly near TDC (Top Dead Center) was developed and experimentally demonstrated in the previous study. As a result, knocking was successfully mitigated and indicated thermal efficiency was improved [1],[2],[3],[4]. However, performance of the proposed system was evaluated at only limited operating conditions. In the present study, to investigate the effect of piston movement near TDC on combustion characteristics and indicated thermal efficiency and to clarify the knock mitigation mechanism of the proposed method, experimental studies were carried out using a single cylinder engine with a compression ratio of 13.7 at various engine speeds and loads. The special crank mechanism, which allows piston to move rapidly near TDC developed in the previous study, was applied to the test engine with some modification of tooling accuracy.
Journal Article

A Study of Low Speed Preignition Mechanism in Highly Boosted SI Gasoline Engines

2015-09-01
2015-01-1865
The authors investigated the reasons of how a preignition occurs in a highly boosted gasoline engine. Based on the authors' experimental results, theoretical investigations on the processes of how a particle of oil or solid comes out into the cylinder and how a preignition occurs from the particle. As a result, many factors, such as the in-cylinder temperature, the pressure, the equivalence ratio and the component of additives in the lubricating oil were found to affect the processes. Especially, CaCO3 included in an oil as an additive may be changed to CaO by heating during the expansion and exhaust strokes. Thereafter, CaO will be converted into CaCO3 again by absorbing CO2 during the intake and compression strokes. As this change is an exothermic reaction, the temperature of CaCO3 particle increases over 1000K of the chemical equilibrium temperature determined by the CO2 partial pressure.
Journal Article

A Study of Newly Developed HCCI Engine With Wide Operating Range Equipped With Blowdown Supercharging System

2011-08-30
2011-01-1766
To extend the operating range of a gasoline HCCI engine, the blowdown supercharging (BDSC) system and the EGR guide were developed and experimentally examined. The concepts of these techniques are to obtain a large amount of dilution gas and to generate a strong in-cylinder thermal stratification without an external supercharger for extending the upper load limit of HCCI operation whilst keeping dP/dθmax and NOx emissions low. Also, to attain stable HCCI operation using the BDSC system with wide operating conditions, the valve actuation strategy in which the amount of dilution gas is smaller at lower load and larger at higher load was proposed. Additionally to achieve multi-cylinder HCCI operation with wide operating range, the secondary air injection system was developed to reduce cylinder-to-cylinder variation in ignition timing. As a result, the acceptable HCCI operation could be achieved with wide operating range, from IMEP of 135 kPa to 580 kPa.
Technical Paper

A Study of the Mechanism of High-Speed Knocking in a Two-Stroke SI Engine with High Compression Ratio

2023-10-24
2023-01-1824
Experimental methods and numerical analysis were used to investigate the mechanism of high-speed knocking that occurs in small two-stroke engines. The multi-ion probe method was used in the experiments to visualize flame propagation in the cylinder. The flame was detected by 14 ion probes grounded in the end gas region. A histogram was made of the order in which flames were detected. The characteristics of combustion in the cylinder were clarified by comparing warming up and after warming up and by extracting the features of the cycle in which knocking occurred. As a result, regions of fast flame propagation and regions prone to auto-ignition were identified. In the numerical analysis, flow and residual gas distribution in the cylinder, flame propagation and self-ignition were visualized by 3D CFD using 1D CFD calculation results as boundary conditions and initial conditions.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
Technical Paper

Analysis of Cycle-to-Cycle Variation in In-Cylinder Flow and Combustion by Using Simultaneous PIV Measurements on Two Sections

2023-04-11
2023-01-0215
To realize stable combustion in lean or diluted conditions, reducing cycle-to-cycle variations of flow and fuel distribution is important. In this study, the effect of initial flow field was examined by simultaneous Time-Resolved PIV and visualization on two cross-sections in a fully optical-access engine under motoring and firing conditions with homogeneous pre-mixture. As a result, Omega index was defined and plotted on the correlation map between turbulence kinetic energy and CA10 (duration from ignition timing to 10% to the total accumulated heat). The omega index describes the strength of a horizontal flow field that resembles the shape of the Greek letter Omega. The plots with high Omega index were found frequently in the CA10 retarded cycles. On the other hand, the plots with low Omega index have simple tumble flows and the correlation was clearly found.
Technical Paper

Analysis of Cycle-to-Cycle Variation in a Port Injection Gasoline Engine by Simultaneous Measurement of Time Resolved PIV and PLIF

2020-01-24
2019-32-0552
Cycle-to-cycle variation (CCV) of combustion in low load operation is a factor that may cause various problems in engine operation. Variable valve timing and variable ignition timing are commonly used as a means to reduce this variation. However, due to mountability and cost constraints, these methods are not feasible for use in motorcycle engines. Therefore, development of an engine with minimal CCV without utilizing complicated mechanisms or electronic control is required. CCV of combustion may be caused by fluctuations in in-cylinder flow, air-fuel mixture, temperature, residual gas and ignition energy. In this study, the relationship between CCV of combustion, in-cylinder flow fluctuation and air-fuel mixture fluctuation was the primary focus. In order to evaluate in-cylinder flow fluctuation, Time Resolved Particle Image Velocimetry (TR-PIV) technique was utilized.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Application of Porous Material as Heat Storage Medium to a Turbocharged Gasoline Engine

2020-01-24
2019-32-0541
Porous materials, which have large surface areas, have been used for heat storage. However, porous Si-SiC material, as heat storage medium to be applied to a turbocharged gasoline engine has not been investigated extensively. In this study, porous Si-SiC material was used in the upstream of the turbine as heat storage medium and a model was thereby developed for further study. Substrate surface area and substrate volume of Si-SiC were calculated for structure model calibration. Following these calculations and test results, the pressure loss and thermal model were validated. Results show that the weaken exhaust gas pulsation amplitude by porous Si-SiC leads to better turbine performance and BSFC in steady engine condition for a turbocharged gasoline engine. In addition, its transient operation response needs to be improved under transient engine conditions. Hence the possibility of improving the transient response is investigated with characteristics of porous Si-SiC material.
Journal Article

Development of a Novel Ignition System Using Repetitive Pulse Discharges: Application to a SI Engine

2009-04-20
2009-01-0505
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems. Experiments were conducted using spherically expanding flame configuration for CH4 and C3H8-air mixtures under various conditions. The ignition system using repetitive nanosecond pulse discharges was found to improve inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses. The authors seek for the mechanisms for improving the inflammability in more detail to optimize ignition system, and verify the effectiveness of IES circuit in EGR condition, for real engine use.
Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Technical Paper

Effects of Coolant Temperature and Fuel Properties on Soot Emission from a Spark-ignited Direct Injection Gasoline Engine

2019-12-19
2019-01-2352
Effects of measurement method, coolant temperature and fuel composition on soot emissions were examined by engine experiments. By reducing the pressure fluctuation in the sampling line, the measured soot emissions with better stability and reproducibility could be obtained. With lower coolant temperatures, larger soot emissions were yielded at much advanced fuel injection timings. Compared to gasoline, soot emissions with a blend fuel of normal heptane, isooctane and toluene were significantly decreased, suggesting the amounts of aromatic components (toluene or others) should be increased to obtain a representative fuel for the predictive model of particulate matter in SIDI engines.
Technical Paper

Engine Knocking Detection by Measuring Cylinder Pressure, Combustion Flame, Vibration and Radiation Noise

2023-09-29
2023-32-0080
Knocking is an important issue in improving the efficiency of spark ignition engines. It can be detected by photographing with high-speed cameras or measuring in-cylinder pressure or engine vibration or engine radiation sound. However, these methods each have the problems for example sensor damage risk or necessity of machining the engine. In this paper, we propose the efficient measurement method and the effective evaluation method with the restricted measurement results for engine knocking detection by utilizing the simultaneous measurement results of knocking with these sensors.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Technical Paper

Extension of Lean and Diluted Combustion Stability Limits by Using Repetitive Pulse Discharges

2010-04-12
2010-01-0173
A newly developed small-sized IES (inductive energy storage) circuit with a semiconductor switch at turn-off action was successfully applied to an ignition system. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges was investigated as an alternative to conventional spark ignition systems in the previous papers. Experiments were conducted using constant volume chamber for CH₄ and C₃H₈-air mixtures. The ignition system using repetitive nanosecond pulse discharges was found to improve the inflammability of lean combustible mixtures, such as extended flammability limits, shorted ignition delay time, with increasing the number of pulses for CH₄ and C₃H₈-air mixtures under various conditions. The mechanisms for improving the inflammability were discussed and the effectiveness of IES circuit under EGR condition was also verified.
Journal Article

Extension of Operating Range of a Multi-Cylinder Gasoline HCCI Engine using the Blowdown Supercharging System

2011-04-12
2011-01-0896
The objective of this study is to develop a practical technique to achieve HCCI operation with wide operation range. To attain this objective, the authors previously proposed the blowdown supercharge (BDSC) system and demonstrated the potential of the BDSC system to extend the high load HCCI operational limit. In this study, experimental works were conducted with focusing on improvement of combustion stability at low load operation and the reduction in cylinder to cylinder variation in ignition timing of multi-cylinder HCCI operation using the BDSC system. The experiments were conducted using a slightly modified production four-cylinder gasoline engine with compression ratio of about 12 at constant engine speed of 1500 rpm. The test fuel used was commercial gasoline which has RON of 91. To improve combustion stability at low load operation, the valve actuation strategy for the BDSC system was newly proposed and experimentally examined.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

2018-09-10
2018-01-1664
To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
X