Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2000 HP Tractor-Trailer for the 21st Century

2002-11-18
2002-01-3141
This paper presents the conceptual design of a high-power, high-speed tractor-trailer for severe duty applications. Design of the tractor-trailer introduces several new concepts, including the general vehicle architecture, a new electrical transmission system and a new electric tandem axle. The vehicle architecture consists of a low drag cab concept with a fully integrated turbo-generator power source, an exhaust gas electric decontamination system and auxiliaries. The electric transmission introduces a new combination of electrical machines and power electronics designed to perform under maximum load with minimum dimension, weight and price. The electric tandem axle is a new concept of an all-wheel steering independent suspension with virtual electromagnetic differential.
Technical Paper

A Method for the Characterization of Off-Road Terrain Severity

2006-10-31
2006-01-3498
Highway and roadway surface measurement is a practice that has been ongoing for decades now. This sort of measurement is intended to ensure a safe level of road perturbances. The measurement may be conducted by a slow moving apparatus directly measuring the elevation of the road, at varying distance intervals, to obtain a road profile, with varying degrees of resolution. An alternate means is to measure the surface roughness at highway speeds using accelerometers coupled with high speed distance measurements, such as laser sensors. Vehicles out rigged with such a system are termed inertial profilers. This type of inertial measurement provides a sort of filtered roadway profile. Much research has been conducted on the analysis of highway roughness, and the associated metrics involved. In many instances, it is desirable to maintain an off-road course such that the course will provide sufficient challenges to a vehicle during durability testing.
Technical Paper

A Modified Enhanced Driver Model for Heavy-Duty Vehicles with Safe Deceleration

2023-08-28
2023-24-0171
To accurately evaluate the energy consumption benefits provided by connected and automated vehicles (CAV), it is necessary to establish a reasonable baseline virtual driver, against which the improvements are quantified before field testing. Virtual driver models have been developed that mimic the real-world driver, predicting a longitudinal vehicle speed profile based on the route information and the presence of a lead vehicle. The Intelligent Driver Model (IDM) is a well-known virtual driver model which is also used in the microscopic traffic simulator, SUMO. The Enhanced Driver Model (EDM) has emerged as a notable improvement of the IDM. The EDM has been shown to accurately forecast the driver response of a passenger vehicle to urban and highway driving conditions, including the special case of approaching a signalized intersection with varying signal phases and timing. However, most of the efforts in the literature to calibrate driver models have focused on passenger vehicles.
Technical Paper

A Statistical Approach to Assess the Impact of Road Events on PHEV Performance using Real World Data

2011-04-12
2011-01-0875
Plug in hybrid electric vehicles (PHEVs) have gained interest over last decade due to their increased fuel economy and ability to displace some petroleum fuel with electricity from power grid. Given the complexity of this vehicle powertrain, the energy management plays a key role in providing higher fuel economy. The energy management algorithm on PHEVs performs the same task as a hybrid vehicle energy management but it has more freedom in utilizing the battery energy due to the larger battery capacity and ability to be recharged from the power grid. The state of charge (SOC) profile of the battery during the entire driving trip determines the electric energy usage, thus determining overall fuel consumption.
Technical Paper

A U.S. Perspective of Plug-in Hybrids and an Example of Sizing Study, Prototype Development and Validation of Hybridized FC-NEV with Bi-directional Grid Inter-connect for Sustainable Local Transportation

2006-09-14
2006-01-3001
There is increasing interest in the use of alternative fuels for transportation, due to the increasing cost of petroleum based fuels. One possible alternative to the use of petroleum for transportation is to use electric grid power. This paper explores a possible design solution based on a plug-in fuel cell hybrid. A scaled down version of FC-HEV that is applicable to this concept, has been implemented as a proof of concept with fast prototyping toolkits, including a 32 bit micro processor, Matlab/Simulink software and an embedded system development kit. The resulting prototype vehicle demonstrated a high gasoline equivalent MPG as well as a successful functionality of micro grid power generation.
Journal Article

Adaptive Energy Management Strategy Calibration in PHEVs Based on a Sensitivity Study

2013-09-08
2013-24-0074
This paper presents a sensitivity analysis-based study aimed at robustly calibrating the parameters of an adaptive energy management strategy designed for a Plugin Hybrid Electric Vehicle (PHEV). The supervisory control is developed from the Pontryagin's Minimum Principle (PMP) approach and applied to a model of a GM Chevrolet Volt vehicle. The proposed controller aims at minimizing the fuel consumption of the vehicle over a given driving mission, by achieving a blended discharge strategy over the entire cycle. The calibration study is conducted over a wide set of driving conditions and it generates a look-up table and two constant values for the three controller parameters to be used in the in-vehicle implementation. Finally, the calibrated adaptive control strategy is validated against real driving cycles showing the effectiveness of the calibration approach.
Technical Paper

An 1800 HP, Street Legal Corvette: An Introduction to the AWD Electrically-Variable Transmission

2005-04-11
2005-01-1169
New vehicle technologies open up a vast number of new options for the designer, removing traditional constraints. Though hybrid powertrains have thus far been implemented chiefly to improve the fuel economy of already economical passenger cars, hybrid technology may have even more to offer in a performance vehicle. In the year when the C6 Corvette and two large GM hybrid projects have been unveiled, a new case study looks to combine these ideas and explore the performance limits for the next generation high performance sports car. Through an innovative transmission concept and thoughtful packaging, the next generation Corvette could enhance a 600 HP spark-ignited V-8 (supercharged LS2) with 1200 HP from electric machines, and still meet current emission standards. Such immense tractive power, however, would be useless without an intelligent means of delivering this power to the wheels.
Technical Paper

An Electric Traction Platform for Military Vehicles

2004-03-08
2004-01-1583
This paper shall present the design and development of a family of high power, high-speed transport and combat vehicles based on a common module. The system looks to maximize performance at both high-speed operation and low-speed, heavy/severe-duty operation. All-wheel drive/steer-by-wire autonomous traction modules provide the basis for the vehicle family. Each module can continuously develop 300-400 kW of power at the wheels and has nearly double peak capability, exploiting the flexibility of the electric traction system. The maximum starting tractive effort developed by one module can reach 10-15 tons, and the full rated power can be produced at speeds of 100 mph. This paper will present the design and layout of the autonomous modules. Details will be provided about the tandem electric axles, with electric differentials and independent steering.
Technical Paper

Applications of Precise Crankshaft Position Measurements for Engine Testing, Control and Diagnosis

1989-02-01
890885
This paper presents several applications of a precise, moderate sampling rate measurement of the crankshaft angular position of a reciprocating IC engine. It is shown that the measurement can be made with a relatively inexpensive noncontacting sensor. Given sufficient precision and sampling rate, the various applications include: crankshaft reference position measurements for ignition timing (gasoline fueled engines), or injector timing (for electronically controlled diesel engines); crankshaft angular speed and acceleration measurements for estimating instantaneous indicated torque, and for diagnosing engine malfunctions. The torque estimate is potentially useful for engine control, to improve engine performance with respect to reducing cycle to cycle and cylinder to cylinder nonuniformity, and with respect to fuel economy.
Journal Article

Battery Selection and Optimal Energy Management for a Range-Extended Electric Delivery Truck

2022-09-16
2022-24-0009
Delivery trucks and vans represent a growing transportation segment which reflects the shift of consumers towards on-line shopping and on-demand delivery. Therefore, electrification of this class of vehicles is going to play a major role in the decarbonization of the transportation sector and in the transition to a sustainable mobility system. Hybrid electric vehicles can represent a medium-term solution and have gained an increasing share of the market in recent years. These vehicles include two power sources, typically an internal combustion engine and a battery, which gives more degrees of freedom when controlling the powertrain to satisfy the power request at the wheels. Components sizing and powertrain energy management are strongly coupled and can make a substantial impact on the final energy consumption of a hybrid vehicle.
Technical Paper

Comparative study of different control strategies for Plug-In Hybrid Electric Vehicles

2009-09-13
2009-24-0071
Plug-In Hybrid Vehicles (PHEVs) represent the middle point between Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs), thus combining benefits of the two architectures. PHEVs can achieve very high fuel economy while preserving full functionality of hybrids - long driving range, easy refueling, lower emissions etc. These advantages come at an expense of added complexity in terms of available fuel. The PHEV battery is recharged both though regenerative braking and directly by the grid thus adding extra dimension to the control problem. Along with the minimization of the fuel consumption, the amount of electricity taken from the power grid should be also considered, therefore the electricity generation mix and price become additional parameters that should be included in the cost function.
Technical Paper

Data-Driven Estimation of Coastdown Road Load

2024-04-09
2024-01-2276
Emissions and fuel economy certification testing for vehicles is carried out on a chassis dynamometer using standard test procedures. The vehicle coastdown method (SAE J2263) used to experimentally measure the road load of a vehicle for certification testing is a time-consuming procedure considering the high number of distinct variants of a vehicle family produced by an automaker today. Moreover, test-to-test repeatability is compromised by environmental conditions: wind, pressure, temperature, track surface condition, etc., while vehicle shape, driveline type, transmission type, etc. are some factors that lead to vehicle-to-vehicle variation. Controlled lab tests are employed to determine individual road load components: tire rolling resistance (SAE J2452), aerodynamic drag (wind tunnels), and driveline parasitic loss (dynamometer in a driveline friction measurement lab). These individual components are added to obtain a road load model to be applied on a chassis dynamometer.
Technical Paper

Design Optimization of Heavy Vehicles by Dynamic Simulations

2002-11-18
2002-01-3061
Building and testing of physical prototypes for optimization purposes consume significant amount of time, manpower and financial resources. Mathematical formulation and solution of vehicle multibody dynamics equations are also not feasible because of the massive size of the problem. This paper proposes a methodology for vehicle design optimization that does not involve physical prototyping or exhaustive mathematics. The proposed method is fast, cost effective and saves considerable manpower. The methodology uses an industry acknowledged multibody dynamics simulation software (ADAMS) and a flexible architecture to explore large design spaces.
Technical Paper

Design and Control of Commuter Plug-In FC Hybrid Vehicle

2007-09-16
2007-24-0079
Strong dependency on crude oil in most areas of modern transportation needs lead into a significant consumption of petroleum resources over many decades. In order to maximize the effective use of remaining resources, various types of powertrain topologies, such as hybrid configurations among fuel cell, electric battery as well as conventional IC engine, have been proposed and tested out for number of vehicle classes including a personal commuting vehicle. In this paper the vehicle parameters are based on a typical commercial sub-compact vehicle (FIAT Panda) and energy needs are estimated on the sized powertrain. The main control approach is divided in two categories: off-line global optimization with dynamic programming (DP, not implementable in real time), and on-line Proportional and Feed-Forward with PI controllers. The proposed control approaches are developed both for charge-sustaining and charge-depleting mode and sample results are shown and compared.
Journal Article

Design and Validation of a Control-Oriented Model of a Diesel Engine with Two-Stage Turbocharger

2009-09-13
2009-24-0122
Two-stage turbochargers are a recent solution to improve engine performance. The large flexibility of these systems, able to operate in different modes, can determine a reduction of the turbo-lag phenomenon and improve the engine tuning. However, the presence of two turbochargers that can be in part operated independently requires effort in terms of analysis and optimization to maximize the benefits of this technology. In addition, the design and calibration of the control system is particularly complex. The transitioning between single stage and two-stage operations poses further control issues. In this scenario a model-based approach could be a convenient and effective solution to investigate optimization, calibration and control issues, provided the developed models retain high accuracy, limited calibration effort and the ability to run in real time.
Technical Paper

Design of The Ohio State University Electric Race Car

1996-12-01
962511
The aim of this paper is to document a three year process of product development of the Formula Lightningtm electric race car constructed at the Ohio State University. Today interest in electric vehicles (EV's) is growing, due to the technological advances in recent years, but also in part due to recent legislation which mandates the introduction of ‘zero emission vehicles’ in California before the end of the century. The definition of ‘zero emission vehicle’ is: a vehicle which does not emit any pollutants during operation. Technologically, the only near term vehicle which meets this definition is an EV. One of the most difficult problems of electric racing is that the usable energy in a given set of batteries is not as easily determined as the amount of fuel in a tank. Also, the motor controllers may limit power output as battery voltage drops, further decreasing the amount of usable energy in a battery set.
Journal Article

Design of a Parallel-Series PHEV for the EcoCAR 2 Competition

2012-09-10
2012-01-1762
The EcoCAR 2: Plugging into the Future team at the Ohio State University is designing a Parallel-Series Plug-in Hybrid Electric Vehicle capable of 50 miles of all-electric range. The vehicle features a 18.9-kWh lithium-ion battery pack with range extending operation in both series and parallel modes made possible by a 1.8-L ethanol (E85) engine and 6-speed automated manual transmission. This vehicle is designed to drastically reduce fuel consumption, with a utility factor weighted fuel economy of 75 miles per gallon gasoline equivalent (mpgge), while meeting Tier II Bin 5 emissions standards. This report details the rigorous design process followed by the Ohio State team during Year 1 of the competition. The design process includes identifying the team customer's needs and wants, selecting an overall vehicle architecture and completing detailed design work on the mechanical, electrical and control systems. This effort was made possible through support from the U.S.
Technical Paper

Development and Application of Military Wheeled Vehicle Driving Cycle Generator

2005-11-01
2005-01-3560
A methodology has been developed to generate military vehicle driving cycles for use in vehicle simulation models. This methodology is based upon the mission profile for a vehicle, which is typically given within a vehicle's specifications and lists the types of terrains that the vehicle is likely to encounter. A simplistic vehicle powertrain and road load model and the Bekker vehicle-soil interaction model are used to estimate the vehicle performance over each type of terrain. Two types of driving cycles are generated within a Graphical User Interface developed within MATLAB using the results of the vehicle models: Linear modes driving cycles, and Real-world driving cycles.
Technical Paper

Development of Refuse Vehicle Driving and Duty Cycles

2005-04-11
2005-01-1165
Research has been conducted to develop a methodology for the generation of driving and duty cycles for refuse vehicles in conjunction with a larger effort in the design of a hybrid-electric refuse vehicle. This methodology includes the definition of real-world data that was collected, as well as a data analysis procedure based on sequencing of the collected data into micro-trips and hydraulic cycles. The methodology then applies multi-variate statistical analysis techniques to the sequences for classification. Finally, driving and duty cycles are generated based on matching the statistical metrics and distributions of the generated cycles to the collected database. Simulated vehicle fuel economy for these cycles is also compared to measured values.
Journal Article

Development of a Dynamic Driveline Model for a Parallel-Series PHEV

2014-04-01
2014-01-1920
This paper describes the development and experimental validation of a Plug-in Hybrid Electric Vehicle (PHEV) dynamic simulator that enables development, testing, and calibration of a traction control strategy. EcoCAR 2 is a three-year competition between fifteen North American universities, sponsored by the Department of Energy and General Motors that challenges students to redesign a Chevrolet Malibu to have increased fuel economy and decreased emissions while maintaining safety, performance, and consumer acceptability. The dynamic model is developed specifically for the Ohio State University EcoCAR 2 Team vehicle with a series-parallel PHEV architecture. This architecture features, in the front of the vehicle, an ICE separated from an automated manual transmission with a clutch as well as an electric machine coupled via a belt directly to the input of the transmission. The rear powertrain features another electric machine coupled to a fixed ratio gearbox connected to the wheels.
X