Refine Your Search

Topic

Search Results

Standard

A DYNAMIC TEST METHOD FOR DETERMINING THE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

1996-05-01
HISTORICAL
ARP599
This test method describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure are intended to be used only for evaluation of the effectiveness of various cleaning treatments, or cleanliness of element as received from manufacturers. The data obtained by this procedure do not necessarily indicate, qualitatively or quantitatively, the contamination which may be released by a filter element into a fluid during service use. Because of the wide variety of conditions which may exist in service applications, it is recommended that the user design and conduct his own particular service performance test. (See paragraph 10.1).
Standard

AEROSPACE - DYNAMIC TEST METHOD FOR DETERMINING THE RELATIVE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

1996-05-01
HISTORICAL
ARP599B
This SAE Aerospace Recommended Practice (ARP) describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure represent the particulate released from the tested filter element under the prevailing conditions of the test. The results may be used for comparative evaluation of the effectiveness of various cleaning methods or the cleanliness of elements after cleaning or as received from manufacturers.
Standard

Aerospace - Dynamic Test Method for Determining the Relative Degree of Cleanliness of the Downstream Side of Filter Elements

2020-05-05
CURRENT
ARP599D
This SAE Aerospace Recommended Practice (ARP) describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure represent the particulate released from the tested filter element under the prevailing conditions of the test. The results may be used for comparative evaluation of the effectiveness of various cleaning methods or the cleanliness of elements after cleaning or as received from manufacturers.
Standard

Aerospace - Dynamic Test Method for Determining the Relative Degree of Cleanliness of the Downstream Side of Filter Elements

2002-05-21
HISTORICAL
ARP599C
This SAE Aerospace Recommended Practice (ARP) describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure represent the particulate released from the tested filter element under the prevailing conditions of the test. The results may be used for comparative evaluation of the effectiveness of various cleaning methods or the cleanliness of elements after cleaning or as received from manufacturers.
Standard

Aerospace Hydraulic Fluids Physical Properties

2016-11-01
HISTORICAL
AIR1362C
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertains to fluids conforming to the following specifications: MIL-PRF-5606 MIL-H-8446 MIL-PRF-27601 (canceled) MIL-PRF-27601 has been canceled without replacement and the data presented herein is for information purposes only. MIL-PRF-83282 MIL-H-53119 MIL-PRF-87257 AS1241 Type IV, Classes 1 and 2, and Type V
Standard

Aerospace Hydraulic Fluids Physical Properties

2018-08-16
CURRENT
AIR1362D
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertains to fluids conforming to the following specifications: MIL-PRF-5606 MIL-H-8446 MIL-PRF-27601 (canceled) MIL-PRF-27601 has been canceled without replacement and the data presented herein is for information purposes only. MIL-PRF-83282 MIL-H-53119 MIL-PRF-87257 AS1241 Type IV, Classes 1 and 2, and Type V
Standard

Aerospace Hydraulic Fluids Physical Properties

1999-12-01
HISTORICAL
AIR1362A
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertain to fluids conforming to specifications MIL-H-5606, MIL-H-8446, MIL-PRF-27601, MIL-PRF-83282, MIL-H-53119, MIL-PRF-87257, Aerospace Standard 1241 Type IV, Classes 1 and 2, and Type V. The relative merits of hydraulic fluid properties in relation to the fluid formulation, aerospace hydraulic system design and the related materials compatibility are discussed in AIR81, Hydraulic Fluid Properties. This document is essentially a metric document with English units available in the data charts for convenience. There is a treatment of conversions between ISO and English units in AIR1657.
Standard

Aerospace Hydraulic Fluids Physical Properties

2008-07-17
HISTORICAL
AIR1362B
This SAE Aerospace Information Report (AIR) presents data on hydraulic fluids which are of interest to detail designers of hydraulic systems and components for aerospace flight vehicles. The data pertain to fluids conforming to specifications MIL-H-5606, MIL-H-8446, MIL-PRF-27601, MIL-PRF-83282, MIL-H-53119, MIL-PRF-87257, Aerospace Standard 1241 Type IV, Classes 1 and 2, and Type V. The relative merits of hydraulic fluid properties in relation to the fluid formulation, aerospace hydraulic system design and the related materials compatibility are discussed in AIR81, Hydraulic Fluid Properties. This document is essentially a metric document with English units available in the data charts for convenience. There is a treatment of conversions between ISO and English units in AIR1657.
Standard

BUBBLE-POINT TEST METHOD

1992-07-01
HISTORICAL
ARP901
This test method describes a procedure for measuring the largest pore or hole in a filter or similar fluid-permeable porous structure. A standard referee test method for precise determination or resolution of disputes is specified. A simpler inspection test procedure for quality assurance "go-no-go" measurement is also given. Bubble-point testing physics, analysis of bubble-point test data, and correlation with other methods of pore size determination are separately discussed in the appendix.
Standard

Bubble-Point Test Method

2001-05-01
HISTORICAL
ARP901A
This test method describes a procedure for measuring the largest pore or hole in a filter or similar fluid-permeable porous structure. A standard referee test method for precise determination or resolution of disputes is specified. A simpler inspection test procedure for quality assurance “go-no-go” measurement is also given. Bubble-point testing physics, analysis of bubble-point test data, and correlation with other methods of pore size determination are separately discussed in the appendix.
Standard

Bubble-Point Test Method

2022-09-30
CURRENT
ARP901B
This test method describes a procedure for measuring the largest pore or hole in a filter or similar fluid-permeable porous structure. A standard referee test method for precise determination or resolution of disputes is specified. A simpler inspection test procedure for quality assurance “go-no-go” measurement is also given. Bubble-point testing physics, analysis of bubble-point test data, and correlation with other methods of pore size determination are separately discussed in the appendix.
Standard

DYNAMIC TEST METHOD FOR DETERMINING THE DEGREE OF CLEANLINESS OF THE DOWNSTREAM SIDE OF FILTER ELEMENTS

2011-08-10
HISTORICAL
ARP599A
This test method describes a procedure for determining the insoluble contamination level of the downstream side of filter elements. Results of this procedure represent the particulate release rate of the tested filter element under the prevailing conditions of the test and may be used for comparative evaluation of the effectiveness of various cleaning methods or cleanliness of elements as received from manufacturers. Because of the variety of conditions which may exist even under the provisions of this procedure, it is difficult to correlate data from one testing agency to another. The data obtained by this procedure do not necessarily indicate qualitatively or quantitatively, the contamination which may be released by a filter element into the operating fluid during service. When properly conducted, however, the procedure will show marked differences between various cleanliness levels of filter elements.
Standard

Degradation Limits of Hydrocarbon-Based Hydraulic Fluids, MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257 Used in Hydraulic Test Stands

2013-04-22
HISTORICAL
AIR810D
This SAE Aerospace Information Report (AIR) presents data on normally accepted changes in physical properties and contamination levels for military hydraulic fluids used in hydraulic test stands. This information is of importance to all users of hydraulic test stands to assure the performance data obtained on these test stands for specific components will not be adversely affected by excessive changes in fluid properties or contamination levels. The data pertains to fluids conforming to specifications MIL-PRF-5606, MIL-PRF-83282, and MIL-PRF-87257. The guidelines incorporated in the AIR are the general consensus values of knowledgeable professionals. However, the experience and judgment of engineers and operators responsible for the equipment must be relied upon to determine when the hydraulic fluid is to be replaced.
X