Refine Your Search

Topic

Search Results

Standard

Application Testing of Oil-to-Water Oil Coolers for Heat Transfer Performance

2010-10-15
CURRENT
J2414_201010
This SAE Recommended Practice is applicable to oil-to-water oil coolers installed on mobile or stationary equipment. Such oil coolers may be used for the purpose of cooling automatic transmission fluid, hydraulic system oil, retarder system fluids, etc. This document outlines the methods of procuring the test data to determine the operating characteristics of the oil cooling system and the interpretation of the results. For information regarding application testing of oil-to-air oil coolers for heat transfer performance, see SAE J1468. The purpose of this document is to provide a procedure for determining the heat transfer performance characteristics of an oil- to-water oil cooler under specified application operation conditions.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2019-09-05
CURRENT
J1726_201909
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2010-02-15
HISTORICAL
J1726_201002
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Charge Air Cooler Internal Cleanliness, Leakage, and Nomenclature

2015-07-01
HISTORICAL
J1726_201507
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
Standard

Coolants for Internal Combustion Engines

2018-03-29
HISTORICAL
J814_201803
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D3306 and ASTM D4985.
Standard

Coolants for Internal Combustion Engines

2013-07-09
HISTORICAL
J814_201307
This SAE Information Report is a source of information concerning the basic properties of engine coolants which are satisfactory for use in internal combustion engines. Engine coolant concentrate (antifreeze) must provide adequate corrosion protection, lower the freezing point, and raise the boiling point of the engine coolant. For additional information on engine coolants see ASTM D 3306 and ASTM D 4985.
Standard

ENGINE COOLANT CONCENTRATE—ETHYLENE-GLYCOL TYPE

1973-06-01
HISTORICAL
J1034_197306
This standard covers glycol-type compounds which, when added to engine cooling systems at concentrations of 40-70% by volume of coolant concentrate in water, provide corrosion protection, lower the freezing point, and raise the boiling point of the coolant. Such compounds are intended for a minimum of 1 year (approximately 12,000 miles) service in a properly maintained cooling system. (Reference: SAE HS-40, Maintenance of Automotive Engine Cooling Systems.) Coolants meeting this standard do not require the use of supplementary materials. For additional information on engine coolants, see SAE J814.
Standard

ENGINE COOLING FAN STRUCTURAL ANALYSIS

1996-06-01
HISTORICAL
J1390_199606
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Engine Cooling Fan Structural Analysis

2003-04-24
HISTORICAL
J1390_200304
Three levels of fan structural analysis are included in this practice: 1 Initial Structural Integrity 2 In-vehicle Testing 3 Durability Test Methods The Initial Structural Integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The In-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The Durability Test Methods section describes the detailed test procedures that may be used depending on type of fan, equipment availability, and end objective. Each of the previous levels builds upon information derived from the previous level. Engineering judgment is required as to the applicability of each level to a different vehicle environment or a new fan design.
Standard

Engine Cooling Fan Structural Analysis

2022-02-23
CURRENT
J1390_202202
Three levels of fan structural analysis are included in this practice: a Initial structural integrity. b In-vehicle testing. c Durability (laboratory) test methods. The initial structural integrity section describes analytical and test methods used to predict potential resonance and, therefore, possible fatigue accumulation. The in-vehicle (or machine) section enumerates the general procedure used to conduct a fan strain gage test. Various considerations that may affect the outcome of strain gage data have been described for the user of this procedure to adapt/discard depending on the particular application. The durability test methods section describes the detailed test procedures for a laboratory environment that may be used depending on type of fan, equipment availability, and end objective. The second and third levels build upon information derived from the previous level.
Standard

Fuel Cell Vehicle Thermal Management

2021-04-30
CURRENT
J3193_202104
The purpose of this SAE Information Report is to provide an overview of special requirements and practices in fuel cell vehicle thermal management. This document is primarily directed to fuel cell applications in motor vehicles.
Standard

Heavy Duty Vehicle Cooling Test Code

2012-09-17
HISTORICAL
J1393_201209
This document supersedes SAE J819 - Engine Cooling System Field Test. The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of engine cooling systems, including charge air coolers, on heavy-duty vehicles with liquid-cooled internal combustion engines. The definition of heavy vehicles for this document includes, but is not limited to, on- and off-highway trucks, cranes, drill rigs, construction, forestry and agricultural machines. Vehicles equipped with side or rear-mounted radiators may require an alternate procedure of a towing dynamometer because of peculiar aerodynamics. Testing is generally conducted to determine compliance with cooling criteria established by the engine manufacturer or the end product user to meet a desired engine reliability goal.
Standard

Heavy-Duty Nonmetallic Engine Cooling Fans--Material, Manufacturing, and Test Considerations

2012-02-06
CURRENT
J1474_201202
The following topics are included in this report: Section 2 - References Section 3-Definitions Section 4 - Material Selection Section 5 - Production Considerations Section 6 - Initial Structural Integrity Section 7 - In-Vehicle Testing Section 8 - Laboratory Testing The Material Selection section lists environmental factors and material properties which should be considered when determining appropriate fan material(s) for a given application. The Production Considerations section covers various aspects of machine selection, mold design, and process control. The Initial Structural Integrity section lists factors which should be considered in addition to those covered by Section 3 of SAE J1390. The In-Vehicle Testing section lists factors which should be considered in addition to those covered by Section 4 of SAE J1390.
Standard

Heavy-Duty Vehicle Cooling Test Procedures

2023-02-06
CURRENT
J1393_202302
The purpose of this SAE Recommended Practice is to establish a testing procedure to determine the performance capability of heavy-duty vehicle cooling systems to meet Original Equipment Manufacturer or end user thermal specifications to ensure long term reliable vehicle operations. The recommendations from the present document are intended for heavy-duty vehicles including, but not limited to, on- and off-highway trucks, buses, cranes, drill rigs, construction, forestry, and agricultural machines.
X