Refine Your Search

Topic

Author

Search Results

Technical Paper

A Fundamental Study on Combustion Characteristics in a Pre-Chamber Type Lean Burn Natural Gas Engine

2019-09-09
2019-24-0123
Pre-chamber spark ignition technology can stabilize combustion and improve thermal efficiency of lean burn natural gas engines. During compression stroke, a homogeneous lean mixture is introduced into pre-chamber, which separates spark plug electrodes from turbulent flow field. After the pre-chamber mixture is ignited, the burnt jet gas is discharged through multi-hole nozzles which promotes combustion of the lean mixture in the main chamber due to turbulence caused by high speed jet and multi-points ignition. However, details mechanism in the process has not been elucidated. To design the pre-chamber geometry and to achieve stable combustion under the lean condition for such engines, it is important to understand the fundamental aspects of the combustion process. In this study, a high-speed video camera with a 306 nm band-pass filer and an image intensifier is used to visualize OH* self-luminosity in rapid compression-expansion machine experiment.
Journal Article

A Numerical Study of the Effects of FAME Blends on Diesel Combustion and Emissions Characteristics Using a 3-D CFD Code Combined with Detailed Kinetics and Phenomenological Soot Formation Models

2013-10-14
2013-01-2689
The objective of the present research is to analyze the effects of using oxygenated fuels (FAMEs) on diesel engine combustion and emission (NOx and soot). We studied methyl oleate (MO), which is an oxygenated fuel representative of major constituents of many types of biodiesels. Engine tests and numerical simulations were performed for 100% MO (MO100), 40% MO blended with JIS#2 diesel (MO40) and JIS#2 diesel (D100). The effects of MO on diesel combustion and emission characteristics were studied under engine operating conditions typically encountered in passenger car diesel engines, focusing on important parameters such as pilot injection, injection pressure and exhaust gas recirculation (EGR) rate. We used a diesel engine complying with the EURO4 emissions regulation, having a displacement of 2.2 L for passenger car applications. In engine tests comparing MO with diesel fuel, no effect on engine combustion pressure was observed for all conditions tested.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics

2002-05-06
2002-01-1750
A numerical study was carried out to investigate combustion characteristics of a dual-fuel gas diesel engine, using a multi-dimensional model combined with detailed chemical kinetics, including 43 chemical species and 173 elementary reactions. In calculations, the effects of initial temperature, EGR ratios on ignition, and combustion were examined. The results indicated EGR combined with intake preheating can favorably reduced NOx and THC emissions simultaneously. This can be explained by the fact that combustion mechanism is changed from flame propagation to HCCl like combustion.
Technical Paper

A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined with Detailed Kinetics

2003-05-19
2003-01-1939
Natural gas pre-mixture is ignited by a small amount of pilot fuel in the dual fuel engine. In this paper, numerical studies were carried out to investigate the combustion and exhaust gas emissions formation process of this engine type by using a multi dimensional model combined with the detailed chemical kinetics including 57 chemical species and 290 elementary reactions. In calculation, the effect of the pre-mixture concentration on combustion was examined. The result indicated that the increased concentration of natural gas could improve the burning fraction and THC, CO emissions due to the increased pre-mixture consumption rate and the cylinders gas temperature.
Technical Paper

A Numerical Study on the Effects of FAME Blends on Diesel Spray and Soot Formation by Using KIVA3V Code Including Detailed Kinetics and Phenomenological Soot Formation Models

2014-10-13
2014-01-2653
The objective of the present research was to analyze the effects of using oxygenated fuels (FAMEs or biodiesel fuels) on injected fuel spray and soot formation. A 3-D numerical study which using the KIVA-3V code with modified chemical and physical models was conducted. The large-eddy simulation (LES) model and KH-RT model were used to simulate fuel spray characteristics. To predict soot formation processes, a model for predicting gas-phase polycyclic aromatic hydrocarbons (PAHs) precursor formation was coupled with a detailed phenomenological particle formation model that included soot nucleation from the precursors, surface growth/oxidation and particle coagulation. The calculated liquid spray penetration results for all fuels agreed well with the measured data. The spray measurements were conducted using a constant volume chamber (CVC), which can simulate the ambient temperature and density under real engine conditions.
Journal Article

A Study on High-Accuracy Test Method for Fuel Consumption of Heavy-Duty Diesel Vehicles Considering the Transient Characteristics of Engines

2016-04-05
2016-01-0908
In the conventional approval test method of fuel consumption for heavy-duty diesel vehicles currently in use in Japan, the fuel consumption under the transient test cycle is calculated by integrating the instantaneous fuel consumption rate referred from a look-up table of fuel consumptions measured under the steady state conditions of the engine. Therefore, the transient engine performance is not considered in this conventional method. In this study, a highly accurate test method for fuel consumption in which the map-based fuel consumption rate is corrected using the transient characteristics of individual engines was developed. The method and its applicability for a heavy-duty diesel engine that complied with the Japanese 2009 emission regulation were validated.
Technical Paper

A Study on the Characteristics of Natural Gas Combustion at a High Compression Ratio by Using a Rapid Compression and Expansion Machine

2012-09-10
2012-01-1651
Natural gas is an attractive alternative fuel for internal combustion engines. Homogeneous charge compression ignition (HCCI) combustion is considered to be one of the most promising measures for increasing thermal efficiency and reducing emissions, but it is difficult to control and stabilize its ignition and combustion processes. This paper describes an experimental study of natural gas combustion utilizing two types of ignition assistance. Spark assistance, which is used for conventional spark ignition (SI) engines, and pilot diesel injection, hereinafter called diesel pilot, which generates multiple ignition points by using a small injection of diesel that accounts for 2% of the total heat release for the cycle. The performance of these two approaches was compared with respect to various combustion characteristics when burning homogeneous natural gas mixtures at a high compression ratio.
Technical Paper

Achievement of Medium Engine Speed and Load Premixed Diesel Combustion with Variable Valve Timing

2006-04-03
2006-01-0203
A variable valve timing (VVT) mechanism was applied to achieve premixed diesel combustion at higher load for low emissions and high thermal efficiency in a light duty diesel engine. By means of late intake valve closing (LIVC), compressed gas temperatures near the top dead center are lowered, thereby preventing too early ignition and increasing ignition delay to enhance fuel-air mixing. The variability of effective compression ratio has significant potential for ignition timing control of conventional diesel fuel mixtures. At the same time, the expansion ratio is kept constant to ensure thermal efficiency. Combining the control of LIVC, EGR, supercharging systems and high-pressure fuel injection equipment can simultaneously reduce NOx and smoke. The NOx and smoke suppression mechanism in the premixed diesel combustion was analyzed using the 3D-CFD code combined with detailed chemistry.
Journal Article

An Investigation on the Ignition Characteristics of Lubricant Component Containing Fuel Droplets Using Rapid Compression and Expansion Machine

2016-10-17
2016-01-2168
With the development of downsized spark ignition (SI) engines, low-speed pre-ignition (LSPI) has been observed more frequently as an abnormal combustion phenomenon, and there is a critical need to solve this issue. It has been acknowledged that LSPI is not directly triggered by autoignition of the fuel, but by some other material with a short ignition delay time. It was previously reported that LSPI can be caused by droplets of lubricant oil intermixed with the fuel. In this work, the ignition behavior of lubricant component containing fuel droplets was experimentally investigated by using a constant volume chamber (CVC) and a rapid compression and expansion machine (RCEM), which enable visualization of the combustion process in the cylinder. Various combinations of fuel compositions for the ambient fuel-air mixture and fractions of base oil/metallic additives/fuel for droplets were tested.
Technical Paper

Analysis of the Effect of Eco-driving with Early Shift-up on Real-world Emission

2010-10-25
2010-01-2279
For the reduction of greenhouse gas emission in the transportation sector, various countermeasures against CO₂ emission have been taken. The eco-driving has been paid attention because of its immediate effect on the CO₂ reduction. Eco-driving is defined as a driving method with various driving techniques to save fuel economy. The eco-driving method has been promoted to the common drivers as well as the drivers of carriers. Additionally, there are many researches about improvement of fuel efficiency and CO₂ reduction. However, the eco-driving will have the reduction effect of CO₂ emission, the influence of the eco-driving on air pollutant emission such as NOx is not yet clear. In this study, the effect of the eco-driving on real-world emission has been analyzed using the diesel freight vehicle with the on-board measurement system.
Technical Paper

BSFC Improvement and NOx Reduction by Sequential Turbo System in a Heavy Duty Diesel Engine

2012-04-16
2012-01-0712
Reduction of exhaust emissions and BSFC has been studied using a high boost, a wide range and high-rate EGR in a Super Clean Diesel, six-cylinder heavy duty engine. In the previous single-turbocharging system, the turbocharger was selected to yield maximum torque and power. The selected turbocharger was designed for high boosting, with maximum pressure of about twice that of the current one, using a titanium compressor. However, an important issue arose in this system: avoidance of high boosting at low engine speed. A sequential and series turbo system was proposed to improve the torque at low engine speeds. This turbo system has two turbochargers of different sizes with variable geometry turbines. At low engine speed, the small turbocharger performs most of the work. At medium engine speed, the small turbocharger and large turbocharger mainly work in series.
Technical Paper

Combined Effects of EGR and Supercharging on Diesel Combustion and Emissions

1993-03-01
930601
An experimental study has been made of a single cylinder, direct-injection diesel engine having a re-entrant combustion chamber designed to enhance combustion so as to reduce exhaust emissions. Special emphasis has been placed on controlling the inert gas concentration in the localized fuel-air mixture to lower combustion gas temperatures, thereby reduce exhaust NOx emission. For this specific purpose, an exhaust gas recirculation (EGR) system, which has been widely used in gasoline engines, was applied to the DI diesel engine to control the intake inert gas concentration. In addition, supercharging and increasing fuel injection pressure prevent the deterioration of smoke and unburned hydrocarbons and improve fuel economy, as well.
Technical Paper

Combustion Control Method of Homogeneous Charge Diesel Engines

1998-02-23
980509
Under heavy load condition, single fuel operation with diesel fuel was studied experimentally for the homogeneous charge diesel combustion (HCDC) method. HCDC engine, in which pre-mixture was formed by fuel injected into an intake manifold and mixed with air beforehand then ignited by small amount of fuel directly injected into a cylinder, can reduce NOx and smoke simultaneously from the diesel engine. In HCDC the higher the premixed fuel ratio was, the lower the emissions were. Accordingly, it was indicated that homogeneous pre-mixture contributed to improvement of exhaust emissions. However, a diesel knocking due to uncontrolled self-ignition may occur under high premixed fuel ratio conditions in the case of operating heavy loads. Thus, the maximum amount of premixed fuel was restricted by these knocking limits.
Technical Paper

Combustion and Exhaust Emissions in a Direct-injection Diesel Engine Dual-Fueled with Natural Gas

1995-02-01
950465
Dual-fuel operation of a direct-injection diesel engine with natural gas fuel can yield a high thermal efficiency almost comparable to the diesel operation at higher loads. The dual-fuel operation, however, at lower loads inevitably suffers from lower thermal efficiency and higher unburned fuel. To improve this problem, engine tests were carried out on a variety of engine parameters including diesel fuel injection timing advance, intake throttling and hot and cooled exhaust gas recirculation (EGR). It was found that diesel injection timing advance gave little improvement in thermal efficiency and increased NOx. Intake throttling promoted better combustion and shortened its duration with a consequent improvement in efficiency at higher natural gas fractions. Hot EGR raised thermal efficiency, reduced smoke levels, and maintained low NOx levels. Cooled EGR reduced NOx emissions but lowered thermal efficiency.
Technical Paper

Computational Study to Improve Thermal Efficiency of Spark Ignition Engine

2015-03-10
2015-01-0011
The objective of this paper is to investigate the potential of lean burn combustion to improve the thermal efficiency of spark ignition engine. Experiments used a single cylinder gasoline spark ignition engine fueled with primary reference fuel of octane number 90, running at 4000 revolution per minute and at wide open throttle. Experiments were conducted at constant fueling rate and in order to lean the mixture, more air is introduced by boosted pressure from stoichiometric mixture to lean limit while maintaining the high output engine torque as possible. Experimental results show that the highest thermal efficiency is obtained at excess air ratio of 1.3 combined with absolute boosted pressure of 117 kPa. Three dimensional computational fluid dynamic simulation with detailed chemical reactions was conducted and compared with results obtained from experiments as based points.
Technical Paper

Concept of a city commuter car powered with proton exchange membrane fuel cell operating on reformed methanol

2000-06-12
2000-05-0332
A very small electric vehicle, powered with a proton exchange membrane fuel cell operating on reformed methanol, is planned and designed in this paper to solve social problems associated with air pollution and heavy traffic conditions. Next, the driving range is simulated by the experimental data of the output and the performance. The conclusions of this paper are as follows: (1) The power train employing the fuel cell and compact brushless DC motor serves to realize high efficiency and reduce weight for energy saving.
Technical Paper

Controlling Combustion Characteristics Using a Slit Nozzle in a Direct-Injection Methanol Engine

1994-10-01
941909
A new type of fuel injection nozzle, called a “slit nozzle,” has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation.
Technical Paper

Development and Improvement of an Ultra Lightweight Hybrid Electric Vehicle

2003-03-03
2003-01-2011
An experimental ultra lightweight compact vehicle named “the Waseda Future Vehicle” has been designed and developed, aiming at a simultaneous achievement of low exhaust gas emissions, high fuel economy and driving performance. The vehicle is powered by a dual-type hybrid system having a SI engine, electric motor and generator. A high performance lithium-ion battery unit is used for electricity storage. A variety of driving cycles were reproduced using the hybrid vehicle on a chassis dynamometer. By changing the logics and parameters in the electronic control unit (ECU) of the engine, a significant improvement in emissions was possible, achieving a very high fuel economy of 34 km/h at the Japanese 10-15 drive mode. At the same time, a numerical simulation model has been developed to predict fuel economy. This would be very useful in determining design factors and optimizing operating conditions in the hybrid power system.
Technical Paper

Development of NOx Storage Reduction System for a Heavy-Duty Dimethyl Ether Engine

2005-04-11
2005-01-1088
To establish NOx Storage Reduction(NSR) system, the effect of post fuel injection in exhaust pipe with rich spike on NOx conversion rate was investigated. With post fuel injection, a higher injection pressure and the rich spike close to the NSR catalyst (just before the NSR catalyst) shows better NOx reduction performance. Based on these results, exhaust emission was tested in transient driving mode (JE-05). In this driving mode test, it was possible to reduce NOx emission less than 0.5 g/kWh for only a 1% of fuel penalty controlling the rich spike injection precisely.
Journal Article

Effect of Biodiesel on NOx Reduction Performance of Urea-SCR System

2010-10-25
2010-01-2278
The use of biomass fuels for vehicles has been a focus of attention all over the world in terms of prevention of global warming, effective utilization of resources and local revitalization. For the purpose of beneficial use of unused biomass resources, the movement of the use of bioethanol and biodiesel made from them has spread in Japan. In Japan, biodiesel is mainly made from waste cooking oil collected by local communities or governments, and in terms of local production for local consumption, it is used as neat fuel (100% biofuel) or mixed with diesel fuel in high concentration for the vehicles. On the other hand, extremely low emission level must be kept for not only gasoline vehicles but also diesel vehicles in the post new long-term regulation implemented from 2009 in Japan.
X